圖 10.2 現有與新軟體技術的假設檢定之 Minitab 輸出

Two-sample T for Current vs New

N Mean StDev SE Mean 12 325.0 40.0 Current 12 286.0 44.0 13

Difference = mu Current - mu New Estimate for difference: 39.0000

95% lower bound for difference = 9.4643

T-Test of difference = 0 (vs \rightarrow): T-Value = 2.27 P-Value = 0.017 DF = 21

為 Minitab 的現有與新軟體技術之比較輸出。結果最後一行顯示 t=2.27 及 p 值= 0.017。注意 Minitab 採用式 (10.7) 計算出的自由度為 21。

⑨實用忠告

在任何情形下,均 應盡可能地使樣本 大小相等,即 n_1 =

本節中介紹之區間估計與假設檢定程序為穩健,且可用於極小之樣本大小。大 多數應用上,雖然母體不是常態分配,但若兩樣本大小相等或幾乎相等,且總樣 本數目 $n_1 + n_2$ 至少為 20,則可期望有較佳結果。若母體分配極度偏斜或包含離群 值,則應使用較大的樣本數目。若分析者對母體分配至少是近似常態分配感到滿 意,方可使用較小的樣本數。

評註

另一種當 σ_1 與 σ_2 未知時,兩母體平均數之差的推論係基於兩母體具有相同標準差 $(\sigma_1 = \sigma_2 = \sigma)$ 的 假定。在此假定下,兩樣本標準差結合成下列混合樣本變異數:

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

此時t檢定統計量則變成

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - D_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

且具有 $n_1 + n_2 - 2$ 個自由度。此時,p 值的計算與抽樣結果的解釋與本節前述討論之程序相同。

此程序的困難之處是較難證實兩母體標準差相等。通常,不同的母體標準差較常出現。使用混合樣 本變異數也許無法滿足結果,尤其是當兩樣本大小 n₁ 與 n₂ 相當不同時。

本節介紹的 t 程序並不需要母體標準差相同之假定,且無論母體變異是否相同均可運用,故其為較 普遍之程序,亦被多方運用。

方法

9. 考慮下列取自兩母體的獨立隨機樣本的結果。

大統計學ch10. indd 393 2011/5/16 下午 10:22:21

- a. 此兩母體平均數之差的點估計值為何?
- b. t 分配之自由度為何?
- c. 在95% 信賴水準下,邊際誤差為何?
- d. 此兩母體平均數之差的 95% 信賴區間為何?
- 10. 考慮下列假設檢定。

$$H_0: \mu_1 - \mu_2 = 0$$

 $H_a: \mu_1 - \mu_2 \neq 0$

下列為取自兩母體的獨立樣本結果。

樣本1	樣本 2
$n_1 = 35$	$n_2 = 40$
$\bar{x}_1 = 13.6$	$\bar{x}_2 = 10.1$
$s_1 = 5.2$	$s_2 = 8.5$

- a. 檢定統計量之值為何?
- b. t 分配之自由度為何?
- c. p 值為何?
- d. 在 α = 0.05 時, 你的結論為何?
- 11. 考慮下列取自兩常態母體的獨立隨機樣本資料:

樣本 1	10	7	13	7	9	8
樣本 2	8	7	8	4	6	9

- a. 試求兩樣本平均數。
- b. 試求兩樣本標準差。
- c. 此兩母體平均數之差的點估計值為何?
- d. 此兩母體平均數之差的 90% 信賴區間估計值為何?

應用

- 12. 在美國運輸部所蒐集的資料中,可看到美國 75 個大都會區的居民每天在車上的 哩程數。假定一個包含 50 位水牛城居民的簡單隨機樣本,其平均數為一天 22.5 哩,標準差為一天 8.4 哩;而另一包含 40 位波士頓市居民的獨立簡單隨機樣 本,其平均數為一天 18.6 哩,標準差為一天 7.4 哩。
 - a. 水牛城與波士頓居民每天在車上的平均哩程數之差的點估計值為何?
 - b. 此兩母體平均數之差的 95% 信賴區間為何?

13. FedEx 與 United Parcel Services (UPS) 在數量與獲利上是世界上兩大貨運公司 (The Wall Street Journal, January 27, 2004)。根據國際機場協會,曼菲斯國際機場 (FedEx) 與路易斯維爾國際機場 (UPS) 是世界 10 大貨運機場中的兩個。下面為 由這些機場每日處理成噸貨物的隨機樣本,以千噸為單位。

曼菲斯					
9.1	15.1	8.8	10.0	7.5	10.5
8.3	9.1	6.0	5.8	12.1	9.3
路易斯維爾					
4.7	5.0	4.2	3.3	5.5	
2.2	4.1	2.6	3.4	7.0	

- a. 請計算各個機場的樣本平均數與樣本標準差。
- b. 此兩母體平均數之差的點估計值為何?由較高容量機場的觀點解釋此值,並 比較兩機場的容量差異。
- c. 試建立兩個機場的每日母體平均分數之差的95% 信賴區間。
- 14. 在 1990 年代,包括鱈魚角、外灘群島、卡羅來納地區,以及海灣海岸等美國沿 海區域,即有非常高的人口成長率。全美國居住在沿海與非沿海地區居民的資 料均被蒐集 (USA Today, July 21, 2000)。假設下列樣本結果分別來自兩個母體之 個人年齡:

沿海地區	非沿海地區
$n_1 = 150$	$n_2 = 175$
$\bar{x}_1 = 39.3 \; $ 歲	$\bar{x}_2 = 35.4$ 歲
s ₁ =16.8 歲	$s_2 = 15.2$ 歲

欲檢定 α =0.05下,此兩母體平均數間無差異。

- a. 請建立虛無與對立假設。
- b. 檢定統計量之值為何?
- c. p 值為何?
- d. 你的結論為何?
- 15. 近幾年來美國職棒大聯盟球員受傷情形持續增加。在 1992 年至 2001 年期間, 因聯盟擴張造成大聯盟球員名單增加 15%。然而,在同一時期,球員因受傷而 被列入傷兵名單人數亦增加 32% (USA Today, July 8, 2002)。一項研究報導,在 2001年大聯盟球員被放在傷兵名單的時間較10年前長。
 - a. 請利用在傷兵名單中球員母體平均天數,建立檢定上述研究問題之虛無與對 立假設。
 - b. 設若運用下列資料:

大統計學ch10. indd 395 2011/5/16 下午 10:22:22

	2001 年球季	1992 年球季
樣本大小	$n_1 = 45$	$n_2 = 38$
樣本平均數	$\bar{x}_1 = 60 \mp$	$\bar{x}_2 = 51 \mp$
樣本標準差	$s_1 = 18 \mp$	$s_2 = 15 \mp$

2001 年球季傷兵名單與 1992 年球季的母體平均天數之差的點估計值為何? 傷兵名單增加天數的比例為何?

- c. 使用 α =0.01,你對傷兵名單的天數結論為何?p值為何?
- d. 這些資料可否建議職棒大聯盟更應多關心此種情形?

16. 大學委員會提供基於受測者父母最高教育程度的學術性向測驗 (SAT) 比較分數,研究假設為父母教育程度較高的學生在 SAT 上有較高的平均成績。2003年時整體平均 SAT 言語分數為 507 (The World Almanac 2004)。學生獨立樣本的 SAT 測驗分數亦同。第一組樣本為父母具學士學位的學生之 SAT 言語測驗分數,第二組樣本則是父母高中畢業但不具大學學歷的學生之 SAT 言語測驗分數。

		學生的父母	
大學	大學畢業 高中畢業		畢業
485 534 650 554 550 572 497 592	487 533 526 410 515 578 448 469	442 580 479 486 528 524	492 478 425 485 390 535

- a. 請建立假設以決定樣本資料是否支持父母教育程度較高的學生,會有較高的母體平均 SAT 言語測驗分數之檢定。
- b. 此兩母體平均數之差的點估計值為何?
- c. 請計算此假設檢定的 p 值。
- d. $\alpha = 0.05$ 時,你的結論為何?
- 17. Merrill Lynch 公司會週期性地要求其顧客對該公司之財務顧問與服務等作評價 (2000 年 Merrill Lynch 顧客滿意度調查)。顧客滿意度調查指標愈高表示其服務愈好,7 則為最高之服務等級。針對兩位財務顧問之獨立抽樣服務評比資料如下,其中顧問 A 有 10 年經驗;而顧問 B 有 1 年經驗。請使用 α=0.05,檢定是否較具經驗的顧問有較高之平均服務評價。

7	J A	顧問 B
n_1	16	$n_2 = 10$
$\bar{x}_1 =$	6.82	$\bar{x}_2 = 6.25$
$s_1 =$	0.64	$s_2 = 0.75$

- a. 請建立虛無假設與對立假設。
- b. 請計算檢定統計量之值。
- c. p 值為何?
- d. 你的結論為何?

- 18. 一些教育補習班提供家教、課堂學習,以及模擬測驗等,以協助學生能在一些如學術性向測驗 (SAT) 等考試中獲得較好的成績。補習班業者宣稱其課程可提升 SAT 成績平均約 120 分 (The Wall Street Journal, January 23, 2003)。某一研究人員不認同此種說法,並認為 120 分係言過其實,僅為懲恿學生參加其考前預習課程而已。為調查某一補習班之成效,該研究人員蒐集了 35 位參加考前預習課程的學生與 48 位未參加此課程學生的 SAT 成績。本研究成績收錄於 CD 光碟中,檔案名為 SAT。
 - a. 請建立可用於檢定該研究人員之 SAT 分數改善少於平均 120 分看法的假設。
 - b. 使用 $\alpha = 0.05$, 你的結論為何?
 - c. 參加考前預習課程而使平均 SAT 成績改善的點估計值為何?請建立此改善之 95% 信賴區間之估計值。
 - d. 得知此信賴區間後,你對該研究人員的建議為何?

10.3 兩母體平均數之差的推論:配對樣本

假定某製造商欲生產某一特定產品可以採用兩種不同的方法。為了使產出最大,該公司想知道哪一種方法其完成一單位產品的平均時間最短。令 μ_1 及 μ_2 分別代表生產方法 1及生產方法 2的母體平均數完成時間,由於事先並不知道哪一種方法較好,我們先假定這兩種方法的平均完成時間相等。因此,虛無假設為 H_0 : $\mu_1-\mu_2=0$ 。如果此一假設被拒絕,即顯示其母體平均數完成時間確有差異。而在本案例中,平均完成時間較短的方法將被公司所採用。此時,虛無及對立假設可表示如下。

$$H_0: \mu_1 - \mu_2 = 0$$

 $H_a: \mu_1 - \mu_2 \neq 0$

而在設計適當的抽樣程序,以蒐集生產時間的資料並對上述假設進行檢定時,有兩種方法:獨立樣本 (independent samples) 及配對樣本 (matched samples) 可供選擇。

- 1. 獨立樣本設計:從作業員中選取一簡單隨機樣本,且每位作業員使用方法 1 來 生產;另從作業員中選取一獨立簡單隨機樣本,且每位作業員使用方法 2 來生 產。並以 10.2 節中所介紹的程序,檢定母體平均數的差異。
- 2. 配對樣本設計:從作業員中選取一簡單隨機樣本,每位作業員先使用其中一種 方法來生產,再使用另一方法來生產。至於使用方法的順序則為隨機指派,因 此,某些作業員先使用方法 1,某些則先使用方法 2。如此下來,每一位被選 取的作業員均提供了一對觀測值,其中一個是方法 1 的,另一個是方法 2 的。