

Digital Integrated Circuits A Design Perspective

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

July 30, 2002

Goal of this chapter

- Present intuitive understanding of device operation
- Introduction of basic device equations
- Introduction of models for manual analysis
- Introduction of models for SPICE simulation
- Analysis of secondary and deep-submicron effects
- Future trends

Mostly occurring as parasitic element in Digital ICs

© Digital Integrated Circuits^{2nd}

³ Devices

PN Junction

Charge carriers

Free electron Electron hole

© Digital Integrated Circuits^{2nd}

Diffusion Current vs. Drift Current

Diffusion current

- Random motion
- Occurs at all times and places
- Resembles Brownian motion
- From high concentration to low concentration
- Drift current
 - Unidirectional movement
 - By electric field

What is Depletion Region ? (1/4)

What is Depletion Region ? (2/4)

□因爲左右兩端濃度 (Concentration) 不均

- → 開始移動
- → 電中性破壞了

An Animation

Diode Current

 $I = I_o(e^{qv/kT} - 1)$ 式中 I_o 為反向飽和電流, q為基本電荷 量, k 為波茲曼常數, T 為絕對溫度。

© Digital Integrated Circuits^{2nd}

© Digital Integrated Circuits^{2nd}

Forward Bias carrier flow

Carrier flow in a forward-biased PN Junction

© Digital Integrated Circuits^{2nd}

Models for Manual Analysis

(a) Ideal diode model

(b) First-order diode model

Please describe the following terms

- Forward Bias
- Reverse Bias

Junction Capacitance

Sprague-Goodman varactor diode

(變容二極體)

http://www.spraguegoodman.com/gvd/gvd1400.html

© Digital Integrated Circuits^{2nd}

© Digital Integrated Circuits^{2nd}

Secondary Effects

Avalanche Breakdown

Avalanche Breakdown

© Digital Integrated Circuits^{2nd}

http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/varactor.html

© Digital Integrated Circuits^{2nd}

Schematic Symbols for Diodes

SPICE Parameters (Diode)

Parameter Name	Symbol	SPICE Name	Units	Default Value
Saturation current	I_S	IS	А	1.0 E-14
Emission coefficient	п	Ν	-	1
Series resistance	R_S	RS	Ω	0
Transit time	$ au_T$	TT	sec	0
Zero-bias junction capacitance	C_{j0}	C10	F	0
Grading coefficient	т	Μ	-	0.5
Junction potential	\$ 0	VJ	V	1

First Order SPICE diode model parameters.

Digital or Analog?

HSPICE (2/2) □ Digital or Analog ?

© Digital Integrated Circuits^{2nd}

HW3-2

□ What are the applications of Diodes ?

- Symbol
- Function
- Applications
- Real products (Company and model names is needed)

Relationship between a silicon foundry, and IC design team, and a CAD tool provider

IDM (Integrated Device Manufacturer)

MOSEL
SiS
Winbond
MXIC

□ IBM □ LG □ TI

Design

Fabrication

© Digital Integrated Circuits^{2nd}

HW#3-3

□ IC Design Houses

- Please find out the websites of 15 IC design houses in Taiwan stock market.
- Please write down their English and Chinese names.
- Please find out the logo of each company.

What is a Transistor?

A Switch! An MOS Transistor

The MOS Transistor

MOS Transistors - Types and Symbols

© Digital Integrated Circuits^{2nd}

Threshold Voltage: Concept

Operation Regions of a MOS Transistor

© Digital Integrated Circuits^{2nd}

The Body Effect

Basic CMOS gates

D 2NAND

Transistor in Linear Region

MOS transistor and its bias conditions

Transistor in Saturation Region

I-V Relations: Long-Channel Device

Linear Region: $V_{DS} \leq V_{GS} - V_T$

$$I_D = k_n \frac{W}{L} \left((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right)$$

with

$$k'_n = \mu_n C_{OX} = \frac{\mu_n \varepsilon_{OX}}{t_{OX}}$$
 Process Transconductance
Parameter

Saturation Mode: $V_{DS} \ge V_{GS} - V_T$ Channel Length Modulation $I_D = \frac{k'_n W}{2} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$

© Digital Integrated Circuits^{2nd}

A model for manual analysis

$$V_{DS} > V_{GS} - V_T$$

$$I_D = \frac{k'_n W}{2 L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$

$$V_{DS} < V_{GS} - V_T$$

$$I_D = k'_n \frac{W}{L} ((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2})$$

with

$$V_T = V_{T0} + \gamma (\sqrt{\left|-2\phi_F + V_{SB}\right|} - \sqrt{\left|-2\phi_F\right|})$$

42 Devices

Current-Voltage Relations The Deep-Submicron Era

Long Channel vs. Short Channel (3/3) I_D versus V_{GS}

© Digital Integrated Circuits^{2nd}

Long Channel vs. Short Channel (3/3)

© Digital Integrated Circuits^{2nd}

⁴ Devices

A unified model for manual analysis

$$\begin{split} I_D &= 0 \text{ for } V_{GT} \leq 0 \\ I_D &= k' \frac{W}{L} \left(V_{GT} V_{min} - \frac{V_{min}^2}{2} \right) (1 + \lambda V_{DS}) \text{ for } V_{GT} \geq 0 \\ \text{with } V_{min} &= \min(V_{GT}, V_{DS}, V_{DSAT}), \\ V_{GT} &= V_{GS} - V_T, \\ \text{and } V_T &= V_{T0} + \gamma (\sqrt{|-2\phi_F + V_{SB}|} - \sqrt{|-2\phi_F|}) \end{split}$$

© Digital Integrated Circuits^{2nd}

Simple Model versus SPICE

A PMOS Transistor

Transistor Model for Manual Analysis

Table 3.2 Parameters for manual model of generic 0.25 μm CMOS process (minimum length device).

	<i>V</i> _{T0} (V)	γ (V ^{0.5})	V _{DSAT} (V)	k' (A/V ²)	$\lambda (V^{-1})$
NMOS	0.43	0.4	0.63	$115 imes10^{-6}$	0.06
PMOS	-0.4	-0.4	-1	$-30 imes10^{-6}$	-0.1

The Transistor as a Switch

© Digital Integrated Circuits^{2nd}

Fig. 3.28 Simulated equivalent resistance of a minimum size NMOS transistor in 0.25um CMOS process as function of $V_{DD} (V_{GS} = V_{DD}^{'} V_{DS} = V_{DD}) \rightarrow V_{DD}/2$

© Digital Integrated Circuits^{2nd}

The Transistor as a Switch

Table 3.3 Equivalent resistance R_{eq} (*W*/*L*= 1) of NMOS and PMOS transistors in 0.25 µm CMOS process (with $L = L_{min}$). For larger devices, divide R_{eq} by *W*/*L*.

V _{DD} (V)	1	1.5	2	2.5	
NMOS (kΩ)	35	19	15	13	
PMOS (kΩ)	115	55	38	31	

HW3-4

□ Please describe the following things:

- Linear Region of a MOS Transistor
- Saturation Region of a MOS Transistor
- Short Channel effect of a MOS Transistor

MOS Capacitances Dynamic Behavior

1815 Thomson Map of China & Formosa (Taiwan)

© Digital Integrated Circuits^{2nd}

Dynamic Behavior of MOS Transistor

Gate Capacitance

C_{GC} = Total capacitance

Operation Region	Cgb	C _{gs}	C_{gd}	
Cutoff	C _{ox} WL _{eff}	0	0	
Triode	0	$C_{ox}WL_{eff}/2$	$C_{ox}WL_{eff}/2$	
Saturation	0	$(2/3)C_{ox}WL_{eff}$	0	

Most important regions in digital design: saturation and cut-off *請參考 Text Book: Table 3-4 (Page 109)*

Diffusion Capacitance

© Digital Integrated Circuits^{2nd}

Junction Capacitance

© Digital Integrated Circuits^{2nd}

Capacitances in 0.25 µm CMOS process

	C_{ox} (fF/ μ m ²)	С _О (fF/µm)	C_j (fF/ μ m ²)	m_{j}	$egin{array}{c} \phi_b \ (V) \end{array}$	C _{jsw} (fF/µm)	m _{jsw}	φ _{bsw} (V)
NMOS	6	0.31	2	0.5	0.9	0.28	0.44	0.9
PMOS	6	0.27	1.9	0.48	0.9	0.22	0.32	0.9

The Sub-Micron MOS Transistor

Threshold Variations
 Subthreshold Conduction
 Parasitic Resistances

Threshold Variations

Sub-Threshold Conduction

Sub-Threshold I_D vs V_{GS}

$$I_D = I_0 e^{\frac{qV_{GS}}{nkT}} \left(1 - e^{-\frac{qV_{DS}}{kT}} \right)$$

Sub-Threshold I_D vs. V_{DS}

Subthreshold MOS Characteristics - EE141 0.25u process

Date/fime run: 01/30/02 16:26:16 Temperature: 27.0 (A) nmosWIbsim3_025uIdVds.dat (active) 15n4 15n4

Summary of MOSFET Operating Regions

- \Box Strong Inversion $V_{GS} > V_T$
 - Linear (Resistive) $V_{DS} < V_{DSAT}$
 - Saturated (Constant Current) $V_{DS} \ge V_{DSAT}$
- \Box Weak Inversion (Sub-Threshold) $V_{GS} \leq V_T$
 - Exponential in V_{GS} with linear V_{DS} dependence

Parasitic Resistances

Latch-up in CMOS circuits

- CMOS因為都是 "Well" process, 這也造成一些 無法避免的 junction, 一但有junction, Diode,
 Bipolar, Resistor 的效應便出現,這些非原先設 計的元件會造成V_{DD}與V_{SS}間一個 "lowresistance conducting path"
- □ Latch-up 的 induce:
 - 1)glitches on the supply rails
 - 2)incident radiation

Remedies for the latch-up problem (1/2)

- □ 提高substrate之doping level, drop the R_s
- □ Reducing R_{well} by control of fabrication parameters and by ensuring a low contact resistance to V_{SS}
- □ Guard ring
- □ Trench Isolation: 利用Dry Etching,在 NMOS 及PMOS間挖一道 Trench,並塡 SiO₂
- □ SOI
- □ 其它.....
Remedies for the latch-up problem (2/2)

- □每個 substrate 及 well 都要有 contact
- □每個 substrate 及 well 之contact 都要接 到 V_{DD} 或 V_{SS}
- □每個 substrate 及 well 之contact 都要儘 量接近 source
- □至少每 5 10 個 Tr. 要有一個 substrate contact
- □n Tr. 要靠近 V_{SS}, p Tr. 要靠近 V_{DD}

Future Perspectives (1/2)

25 nm FINFET MOS transistor

© Digital Integrated Circuits^{2nd}

74 Devices

Future Perspectives (2/2)

© Digital Integrated Circuits^{2nd}

75 Devices

□ Please describe the facts of:

- Body Effect
- Latch-Up
- The remedies to avoid latch-up effect