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Abstract:

The rapid proliferation of textual and multimedia online databases, digital libraries, Internet
servers, and intranet services has turned reseachers and praditioners dream of creding an
information-rich society into a nightmare of info-gluts. Many reseachers believe that turning an
info-glut into a useful digital library requires automated tedhniques for organizing and
caegorizing large-scale information.

This paper presents reseach in which we sought to develop a scaleable textual classification and
caegorizaion system based on the Kohonen's slf-organizing feaure map (SOM) algorithm. In
our paper, we show how self-organization can be used for automatic thesaurus generation.

Our proposed data structure and algorithm took advantage of the sparsity of coordinates in the
document input vedors and reduced the SOM computational complexity by several order of
magnitude. The proposed Scdeable SOM (SSOM) algorithm mekes large-scale textual
caegorizaion tasks a possibility. Algorithmic intuition and the mathematicd foundation of our
reseach are presented in detail. We also describe three benchmarking experiments to examine
the algorithm's performance d various sales. classification of eledronic meding comments,
Internet homepages, and the Compendex coll ection.



1. Introduction

According to the Webster's Ninth New Collegiate Dictionary, classificaion is defined as
Tsystematic arangement in groups of caegories acwording to established criteria.”
Mathematicians sich as Duda and Hart explained that ““the problem of classificaion is basically
of partitioning the feature regions, one region for eat category” [17].

The patential and importance of system-aided classification techniques have never been more
evident than in the increasing presence of digital libraries, online databases, and Internet/intranet
applicaions. The need to have topical, subject-specific structures (taxonomy of categories) for
many of these emerging large-scde information sources and the difficulty of manually creaing
and maintaining such structures have made clasgfication techniques promising and appealing.

The resurgence of neural network based clasdficaion tediniques, some clustering or
unsupervised learning in nature [17], recently have dtracted significant attention by researchers
[33]. Although computationally extensive, this class of techniques, which is based on network
data structures and statistical algorithms, is generally flexible and powerful and is siited for
parallelizaion. The self-organizing feaure map (SOM) algorithm, developed by Kohonen [26]
[27], in particular, has been widely used in many different engineeing and scientific goplications
such as image recognition, signal processing, and connectionist natural language processing. In
addition, SOM is also widely used in visualization as a dimension (fedure) reduction tool.

The robustnessof the SOM algorithm and its appealing visualizaion effeds have also made it a
prime candidate in several large-scale information caegorization and visualization projeds.
Most noticeably, the Kohonen group has creaed and maintained a WEBSOM server which
caegorizes sveral thousand Internet newsgroup items [22]. The Illinois Digital Library
Initiative projed [48] [47] has also adopted and revised SOM for textual meding comment
caegorization [39] and multi-layered SOM classfication of about 10,000 Internet homepages
[13].

One of the major drawbadks of neural network computation, including the SOM algorithm, has
been its computational complexity. Training instances are often presented multiple times and
network performance is achieved only after gradual modificaion of network connedior/link
weights. Our experience in adopting SOM in several mid-size information visualization and
caegorizaion projects (10-100 MBs, several to hundreds of thousands of abstrad-size
documents) confirmed this general observation [13]. The computational complexity of the SOM
algorithm has rendered it infeasible for large-scde aplications (1-10 GBs, millions of
documents, e.g., the etire seachable Internet WWW homepages). In order to improve the
scalabil ity of the SOM approad to textual classificaion, a more efficient algorithm is needed.

This paper presents our reseach efforts to develop a scalable and efficient textual classification
algorithm based on Kohonen’s SOM algorithm. Our implementation took advantage of the
sparsity of coordinates in typicd document input vedors and reduced the SOM computational
complexity by several orders of magnitude. Although our tedhnique is problem-dependent (i.e.,
suitable for applications that exhibit sparse input veaors), we believe it can be eaily combined
with other more general and domain-independent techniques reported in other reseach.



Sedion 2 presents an overview of relevant classificaion literature. Section 3 presents Neural
Network approad to Thesaurus generation. The original SOM algorithm and our optimized
SSOM algorithm are discussed in Sedion 4. Algorithmic intuition and the mathematical
foundation of the proposed SSOM agorithm are also presented. Section 5 presents
benchmarking results for three textual classificaion applications. Ongoing and future reseach
efforts are summarized in Sedion 6.

2. Textual Classification: Literature Review

Duda and Hart [17] have explained the difference between supervised learning, which primarily
calls for parameter estimation, and ursupervised leaning, which represents clustering
tedniques:

The distinction is that with supervised leaning we know the state of nature (class label)
for eath sample, whereas with unsupervised learning we do not. As one would expect,
the problem of unsupervised leaning is the more difficult one.

Their stated reasons for the importance of unsupervised leaning still apply very well in textual
classification applications [17] [7]. First, the labeling of a large set of sample patterns can be
costly and time consuming. The recent example of the Yahoo! diredory for Internet homepages
is atestament to such an effort. Second, the charaderistics of the patterns can change slowly over
time. This is particularly true in the cntext of most digital libraries and Internet/intranet
applicaions. Finaly, it may be valuable to gain some insight into the structure of the a
colledion. System-generated classfications could provide a good strawman for further
refinement and analysis.

A significant number of text-based clasdficaion algorithms for documents are based on
supervised learning techniques sich as Bayesian probability, decision trees or rule induction,
linea discriminant analysis, logistic regression, and badpropagation-like neural networks [30]
[2] [1] [49]. Other text categorizaion studies have relied on macdhine-readable dictionaries [31]
and natural language processing techniques [41].

We aso found use of unsupervised clustering tedhniques in textual analysis applicaions. For
example, Botafoga used the graph theoretic definition of k-edge-components to define natural
clustersin hypertext systems [4]. Iwayama and Tokunaga compared several dtatistical clustering
methods (e.g., single-link and Ward's) and Bayesian clustering algorithms for text categorization
[25]. Burgin also compared the retrieval eff ectiveness of five hierarchicd clustering methods and
confirmed the single-link clustering method to be inferior to al four other methods [5]. In our
reseach, our focus is on unsupervised leaning and clustering tedniques for textua
classification.

Classification of textual documents requires grouping (or clustering) similar concepts/terms as a
caegory or topic, a processcalling for cluster analysis [18]. Two approadies to cluster analysis
exigt: the serial, statistical approach and the parallel, neural network approach. In this sedion,
we provide only a brief summary of the conventional statistical approadh. (Readers are referred
to [17] [18] for more details) However, becaise our ongoing reseach is based on an
unsupervised neural network algorithm, we provide amore detailed review of the newer parallel,



neural network approacd to textual classficaion.

The Serial, Statistical Approach

Rasmussen [40] defines cluster analysis as " "a statistical technique used to generate a @tegory
structure which fits a set of observations. The groups which are formed should have a high
degree of asociation between members of the same group and a low degree between members
of different groups." She points out that cluster analysis is a tednique that has significant
potential for textua analysis.

Automatic document classificaion involves determining a document representation structure and
methods for determining similarities between documents. The hierarchical clustering of
documents can be caried out either divisively or agglomeratively [46]. Divisive clustering bre&s
one mmplete duster down into smaller pieces. In agglomerative clustering “individual item
similarities are used as a starting point and a gluing operation colleds similar items, or groups,
into larger groups [46]."

Using these tedniques, classes of similar objeds are basically found by doing pairwise
comparisons among all of the data dements. These clustering algorithms are serial in nature in
that pairwise comparisons are made one & atime and the clasgfication structure is creded in a
serial order.

The Parallel, Neural Network Approach

A new approach to addressing clustering and classification problems is based on the
connectionist approad, or neural network computing. Algorithms based upon reural networks
are pardlel in that multiple @mnnedions among the nodes allow for independent, paralel
comparisons.

Neural networks are patterned after the biological ganglia and synapses of the nervous system.
The concept is not new - McCulloch and Pitts suggested the description of a neuron as a logical
threshold limit in 1943[36]. The esential element of the neural network is the neuron. A typicd
neuron j receives a set of input signals from other conneded neurons, x, ead of which is
multiplied by a synaptic weight fador of w;j. All activation weights are then summed to produce
the adivation level for neuron j. Many neural network topologies and error corredion (leaning)
algorithms have been developed sincethe ealy 198)s[33].

The ajustments of the weights of the nodes of the neural network enable the total network to
“learn” in the sense that a neural network's performance @n be aljusted to fit a known set of
data dharaderistics. In supervised leaning, a set of training examples with class labels is
presented, one by one, to the network. The network then calculates outputs based on its current
inpu. The resulting output is then compared with a desired output for that particular input
example. The network weights are then adjusted to reduce the aror. In unsupervised learning,
network models are first presented with an inpu vedor from the set of possible network inputs.
The network leaning rule aljusts the weights  that input examples are grouped into classes
based on their statistical properties [15] [44].

Several information science reseachers have developed neural network clustering algorithms for



textual applications. Mad_eod and Robertson [34] present a two-layer neural network and an
algorithm that is used for document clustering. This algorithm adopts an unsupervised approach
to clustering by way of partitioning. Inputs are binary-valued vedors representing documents.
The algorithm uses two similarity measures in order to alow proof of algorithmic behavior,
cluster sability, and charaderizaion of final clusters. The dgorithm is multi-pass in that
documents are repededly read into the network until two conseautive passes produce identical
classificaions for ead document (convergence). Only those clusters that are successful in
classifying one or more documents during the last passare adive. Inadive clusters do not take
part in any subsequent retrieval operations.

In [10], Chen et a. describe an algorithm for concept classficaion of eledronic brainstorming
comments that combines automatic indexing of the eledronic brainstorming comments, term co-
ocaurrence @ncept spacegeneration, and a Hopfield neural network classfier [23]. Results of
experiments comparing the output of their algorithm with human experts and novices found that
the Hopfield clasgfier performed as well as the novices but two human experts out-performed
the novices and Hopfield clasgfier significantly. Reasons given for the performance differences
centered on the aility of the experts to associate terms more gpropriately.

The Self-organizing M ap Approach

In addition to these unique neural network based clustering algorithms for information science
applications, prior reseach in reural networks has grongly suggested the Kohonen self-
organizing feaure map (SOM) as a good candidate for clustering textual documents.

Each Output Node is a vector of N weights

Kohonen
Layer

Input Layer -- Each Node a vector
representing N terms.

Figure 1. Kohonen SOM topology

Kohonen based his neural network on the associative neural properties of the brain [26]. The
topology of the Kohonen SOM network is shown in Figure 1. This network contains two layers
of nodes - an input layer and a mapping (output) layer in the shape of atwo-dimensional grid [6]
[21]. Theinput layer ads as a distribution layer. The number of nodes in the input layer is equal
to the number of feaures or atributes asociated with the input. Each node of the mapping layer
also has the same number of feaures as there ae inpu nodes. Thus, the input layer and each
node of the mapping layer can be represented as a veaor which contains the number of features



of the input. The network is fully conneded in that every mapping node is conneded to every
inpu node. The mapping nodes are initialized with random numbers. Each adual input is
compared with each node on the mapping gid. The “winning" mapping node is defined as that
with the smallest Euclidean distance between the mapping node vedor and the input vedor. The
inpu thus maps to a given mapping node. The value of the mapping node vedor is then adjusted
to reduce the Euclidean distance In addition, all of the neighboring nodes of the winning node
are ajusted proportionally. In this way, the multi-dimensional (in terms of fegures) input nodes
are mapped to atwo-dimensional output grid. After all of the input is processed (usually after
hundreds or thousands of repeaed presentations), the result should be aspatial organization of
the input data organized into clusters of similar (neighboring) regions. Many engineaing and
scientific goplicaions which involve numeric data (e.g., image recognition, signal processing)
have successully adopted the SOM approad to parallel clustering [27].

Several recent studies adopted the SOM approach to textual analysis and clasdficaion. Ritter
and Kohonen [42] applied the Kohonen SOM to textual analysis in an attempt to detect the
logical similarity between words from the statistics of their contexts. Their first approach
represents context of terms as a set of attribute values that occur in conjunction with the words.
The second approach defines context by the sequences in which words occur, without
consideration of any associated attributes. They analyze simple verbal statements consisting of
nouns, verbs, and adverbs and suggest that ““such phrases or clauses involve some of the
abstractions that appea in thinking, namely, the most common caegories, into which the words
are then automatically grouped [42]." They argue that a similar process may be & work in the
brain. Typicd self-organizing maps refled metric distance relations between patterned
representation vedors. Ritter and Kohonen associate this with lower levels of perception. More
recantly, the Kohonen group hes creaded and maintained a WEBSOM server that demonstrates
its ability to caegorize several thousand Internet newsgroup items [22]. An intuitive two-
dimensional graphical user interfacewas also creaed for WEBSOM browsing.

Mikkulainen [38] developed DISCERN (Dlstributed SCript processing and Episodic memoRy
Network) as his dissertation projed. DISCERN is a prototype of a subsymbolic natural language
processing system that shows how script instantiation and inferences can be leaned from
examples by a parallel distributed processing architedure that is based upon a Kohonen self-
organizing map.

The NSF/ARPA/NASA-funded Illinois Digital Library Initiative projed [48] [47] has aso
adopted and revised SOM for textual document categorization and visualizaion [39] [13]. The
SOM-generated caegories were found to be comparable to those generated by human subjeds
[39]. (Detail s about these studies are to be summarized in later sedions.)

Lin [32] used SOM to classify documents for information retrieval. In this applicaion,
documents are represented as vedors of binary values. The resulting map provides an intuitively-
appealing organization of the input documents. The documents are clasdfied acwrding to their
content and conceptual regions are formed and named on a two-dimensional grid. A prototype
system was developed based on the Macintosh's HyperCard. Merkl and Tjoa [37] suggested
using SOM for organizing software libraries. H. Ichiki et al. [24] developed multi-layer semantic
maps for categorizaion. The same idea was also adopted in the MSOM (multi-layered SOM)
algorithm reported in [13]. By allowing pesentations of multiple layers, SOM was able to
caegorize mid-scale wlleaions (i.e., several to hundreds of thousands of documents).



Although the cdegorization robustness and gaphical friendliness of the SOM-family of
algorithms have been shown in several recent studies, the computational complexity of such
algorithms has caused severe implementation problems, especially for mid-to-large-scale
applicaions. For a mid-scale gplicaion such as the Internet homepage cdegorizaion projed
reported in [13] (10,000 homepages) about 10 hours of processing on a DEC Alpha 3000600
workstation (200MHz, 128 MBs RAM) were required.

Several reseachers have tried to optimize SOM, and general-purpose SOM optimization
tedhniques often have targeted the key steps of the dgorithm. Rodriguez and Almeida [43]
suggested starting with a small grid and adding nodes as the net begins to converge. The
locaions of the alded nodes were interpolated from the locaions of older nodes. The
improvement observed varied from marginal for small applicaionsto 10-fold for large networks.
Koikkalainen et al. [28] suggested a way to improve the processof finding the winning node in
maps which are aimost converged by replacing the exhaustive seach method in SOM with an
heuristic search technique for finding the winning node.

Other reseachers have d@tempted to improve SOM through parallelization. Demian and Mignot
[16] optimized SOM on parallel computers, testing both SIMD and MIND architedures. They
assigned blocks of neurons (nodes) to ead processor. The reported performance improvement
was about 10-fold for 128 processors. Recantly, Chen and Yang [14] also paralleled SOM on
shared-memory multiprocesor (SMP) Convex Exemplar supercomputers. Multiple processors
were used to find the winning node and to update weights of a winning neighborhood. A 10-fold
improvement was also noted for SOM implemented on a 24-procesor Exemplar.

3. A Neural Network Approach to Automatic
Thesaurus Generation

Literature Review

The importance of thesauri in eledronic communication was noticed dozens of years ago. A
thesaurus can help when extending queries in seaching for information, when seleding words to
express ideas, or when switching vocabularies aaoss domains while browsing a @llection of
documents. Furnas at. a [19] showed that different people use the same term to describe the
same objed with a probability less than 20%. A typist being asked to name an editing operation,
might use the words delete, change, remove, spell-check, make into, etc. Atkins and Levin [3]
suggested that meanings may not be nea little padkages attachable to a word, but a blending
from one dictionary sense to another. A good overview of the history of automatic thesaurus
construction can be found in Gerfenstette's book, "Exploring in Automatic Thesaurus Discovery"
[20]. He concludes that solving the problem by hand (manually creaing a thesaurus) is cost-
prohibitive. It is feasible only when the vocabulary is 1) limited 2) known ahead of time and 3)
there exists a person or a group motivated to document exhaustively all the ways in which words
can be used. Manually creaed vocabularies are typicdly either very general and static (like
Webster's) or small and domain dependent (for example, MEDLINE).

A number of reseach efforts have used knowledge-poor approadies for automatic thesaurus
generation. Lewis et a., [20] using Chemistry Ph.D. titles as documents, showed that synonyms



tend never to occur together, but often tend to co-occur with the same set of other title words.
Justeson & Katz [45] have demonstrated that, over large crpora, antonymous adjedives tend to
co-occur in the same sentence much more often than frequency-based probability would indicae.
According to Grefenstette [20] there ae three problems with co-occurrence statistical methods.
1) There is nedl for granularity. The technigue becmes parametric since it depends gredly on
the size of the text window for seledion of words considered relevant. Using huge windows is
computationally expensive. Small ones discard valuable information. 2) Similar concepts may
never happen to co-occur. For example adocument might have either tumor or tumour but not
both. A document would have either car or vehicle but not often both of them neaby. 3) They
are mmputationally expensive. Typicdly, the mmputational complexity grows as O(N°) with
number of terms N.

This probably explains why many researchers turned to neural network tecniques for their
processing. Neural networks are not considered parametric techniques. They do not provide a
statistical model, but they do not need as many assumptions as do classical statistical models.
Patterned after asociative properties of a living brain, neural networks can be trained to discover
statistical significance, to perform classfications, and to visualize information. Neural networks
are very simple to implement. Neura medanisms can ke also easily utilized in parallel
hardware. Kwok [29] trained a threelayer neural network in an attempt to reduce the semantic
spaceto a limited number of axes represented by the hidden layer. One of the significant
drawbadks of thistednique isthat it necessitates manually creaed relevance judgment.

Kwok's tednique falls into the cdegory of supervised leaning. On the wntrary, the idea of
unsupervised learning is that relevance judgments are drealy present in text. If two terms enter
the same sentence they are relevant to some degree One of the very well-known and frequently
used techniques for unsupervised leaning is lf-organization, described in the previous sedion.
We next show how self-organizaion can be used as an automatic thesaurus generation tool.

SSOM asa Thesaurus T ool

Below, we explain how we use Kohonen's SOM as a tool for extracting semantic relationships
between words and creaing a hierarchy of caegories. We use the abreviation SSOM, which
stands for Scdeable Self-organizing Map, to distinguish our algorithm from the original one
developed by T. Kohonen.

Kohonen's SOM is very well known as a clustering and dimension reduction tool. Clustering can
be used for caegorization of input vedors. Dimension reduction can ke used for visualizaion
and for reducing information in order to ease seach, storage or processing of another kind. In
Kohonen's implementation of SOM for caegorizing Internet documents (WEBSOM) [22] there
are no automatically creaed categories. Users are expeded to label the map manually to produce
meaningful categories. Our agorithm credes the labels automatically. For this, we build
hierarchical Kohonen's maps. We produce a hierarchical taxonomy of the clustered documents as
well as the concepts discovered in them. We do it similarly to the way it has been described in
Chen et d. [8]. We aede alabel for a node by assgning the term that corresponds to the largest
coordinate in the representation of the node, cdled the winning term. Neighboring regions
having the same winning terms are merged to produce regions. The winning term is designated
as the caegory (concept) for the entire region. Documents belonging to the same cdegories are



reaursively used to produce smaller maps corresponding to a deeper level in the resulting
hierarchy. Our SSOM algorithm gives a hierarchy of concepts, which is also cdled a thesaurus,
and a hierarchy of documents. A hierarchy can be browsed manually or used as an extension tool
for seach. It is easy to seethat the concepts are ordered from nore general concepts (top) to
more narrow ones (bottom).

We should emphasize that becaise our SSOM produces hierarchies of documents and of terms
by means of the same leaning process it is not biased toward either of these two objedives.
Historically, in automatic semantic analysis, the two objectives have been separate: documents
have been used as attributes to cluster terms or terms have been used as attributes to cluster
documents. SSOM uses the same information to crede hierarchies of documents and of
concepts.

Since SSOM is a neural network tedhnique, an assumption of statistical independence of terms is
not required. As aresult of self organizaion, the vedor spacebemmes quantified. Each quantum
(node in the map) is represented by a spedrum of keywords, ead with its own weight. We all
this combination of terms a concept. Latent Semantic Indexing (LSI) [9,10] is another approadh,
one that makes use of semantic axes that operate on concepts. In LSI, ead semantic axisisalso a
combination of terms with specified weights. It should be noted that our SSOM gives each
concept alabel, which LSM does not do.

Another statistical property of Kohonen's SOM is that the density of nodes in the vedor space
resembles the distribution density of input vedors in the @ncept space Bigger regions
correspond to the ancepts most frequently represented in inpu documents.

4. A Scaleable Self-organizing Map
Algorithm for Textual Classification

The scaleable self-organizing map (SSOM) implementation that we have proposed takes
advantage of the input vedor sparseness that exists in most textual applications. Other general-
purpose optimization techniques discussed in previous reseach and algorithmic paralleling can
also be implemented in conjunction with the proposed SSOM algorithm.

The SOM Algorithm for Textual Classification and Time
Complexity

The proposed SSOM agorithm is based on the conventional SOM algorithm developed by
Kohonen [26] [27]. A sketch of arevised SOM algorithm for textua clasgficaion [13] [39] is
summearized below:

1. Initialize input nodes, output nodes, and connection weights: Use the top (most frequently
occurring) N terms as the input vedor and crede atwo-dimensional map (grid) of M output
nodes (say a 20-by-10 map of 200 nodes). Initialize weights wij from N input nodes to M output
nodes to small random values.

2. Present each document in order: Describe eab document as an input vedor of N



coordinates. Set a coordinate to 1if the document has the crresponding term and to Oif there is
no such term. Each document is presented to the system several times.

3. Compute distance to all nodes: Compute Euclidean distance d; between the input vedor and
each output node j:

N -

d, = Z (X (1) = wy (1)) (1)

where x(t) can be 1 or 0 depending on the presence of i-th term in the document presented at
time t. Here, w; is the vector representing position of the map node j in the document vedor
space From a neural net perspedive, it can also be interpreted as the weight from inpu nodei to
the output node |

4. Select winning node j and update weights to node j” anq its neighbors. Select winning
node j , which produces minimum d;. Update weights to nodes | and its neighborsto reducethe
distances between them and the input vedor x;(t):

W (t+1) = w;; O+ (E+1) —w; (1)) 2

After such updates, nodes in the neighborhood of j* beame more similar to the input vedor xi(t).
Here, n(t) isan error-adjusting coefficient (0 < n(t) < 1) that deaeases over time. (See[26][33]
for the dgorithmic detail s of neighborhood selection and adjustment.)

5. Label regions in map: After the network is trained through repeded presentations of all
documents (ead document is presented at least 5 times), assign a term to ead output node by
choosing the one corresponding to the largest weight (winning term). Neighboring nodes which
contain the same winning terms are merged to form a ancept/topic region (group). Similarly,
submit each document as input to the trained network again and asdgn it to a particular concept
in the map. The resulting map thus represents regions of important terms/concepts with the
documents assigned to them. Concept regions that are similar (conceptually) appea in the same
neighborhood. Similar documents are assigned into same or similar concepts.

Steps 2-4 are repeded many times for eadr document and thus acmunt for most of the
processing time required. Steps 3 (compute distanceto all nodes) and 4 (updete weights) require
iterations through all coordinates in the input vedor. The processing time T for the conventional
SOM s proportional to the number of document presentation cycles (Step 2) and the vedor size

T =0O(NC),
where N isthe input vedor sizeand C is the number of document presentation cycles.

For textual caegorizaion, input vedor size @n be & large & the total number of unique termsin
the etire olledion. In our previous experiments, we have found that the number of unique
terms for mid-scde wmllections (10-50 MBs) after applying thresholds (for example, a term
appeaing more than 2 times) can be as high as tens or hundreds of thousands [12] [11]. By
observing the document colledions that we have analyzed and that have been mentioned in the
literature, for example, Grefenstette’ s works on automatic thesauri [20], it is possible to conclude
that the number of unique terms in a lledion is typically proportional to the size of a
colledion. Representing the size of a @lledion as S we ca define N interms of Sas N = O(S).



Similarly, because ezh document is presented multiple times, C can be represented by S asC =
O(9). Thus, thetotal processingtime T could be estimated as.

T=0(NC) = O(S)

Given the fad that the size of text colledions targeted by automatic processing grows
exponentially over time, we fear that even continuously improving computer hardware (e.g.,
parallel supercomputers) will not be ale to build SOMs using traditional approach. The
conventional SOM's time @mplexity of “square of the size of collection” is deemed un-
scaleable. We believe that even parallel processing on the prevailing supercomputers will not
resolve this algorithmic problem [11].

Based on extensive experimentation [39] [13] and recent analyses of the dharaderistics of textual
classification, we noticed that sparsity of the input vedor stood out as a prime andidate for
SOM optimization. It is evident that for large-scale textua colledions a vast majority of
coordinates in the input vedors are zeros (non-existence of a given term) and only very few are
ones (existence of a given term). Due to the large number of unique terms in mid-to-large-scale
colledions (and thus large inpu vedor size), almost all documents could be represented by a
sparse vedor of a few 1-s, plus mostly O-s. Sparse vedors or matrices are often candidates for
optimizaion in software engineering and operations reseach. We also noted that such an
optimizaion tedhnique has been adopted in automatic linguistic thesaurus generation [20].

Intuition Behind the Technique

Below, we present some intuitive consideration of why such an improvement is possible. More
rigorous proof is presented in the succealing sedion.

Using sparsenessof input vedors is very typical in the textual analysis domain [20]. It is easy to
notice that the vast majority of coordinates in the input vedors (documents) are O-s, and only
very few are 1-s. So, thetypical input veaor may look like this:

...000000000100000110000000000010000001000001...
This is because in each document most of the terms are misang and only a few are present.

The self-organizaion algorithm consists of many training cycles. Each cycle involves only one
inpu vedor. We know that an input vedor is typically very sparse. So, the dhanges in the map
due to ead input are relatively small. To refled the sparsenesspresent in the input vedors we
use special data structures. We represent input vedors as sets consisting of all their non-zero
coordinates. Each non-zero coordinate is essentially a pair (x, i), where x is the @ordinate value
and i specifies the ais. If the aordinate is not in the set, its value is equal to 0. This approac
significantly reduces the amount of information to be stored and makes processing much faster.
The next sedion shows how it can be done.

Our objective isto modify the SOM algorithm so as to be &le to compute distances to all nodes
(Step 3) and updite the weights of nodes (Step 4) at a number of iterations proportional to the
number of non-zero coordinates in the input vedor, represented here asP. Since we were ale to
do so, we can obtain an algorithm that takes O(PS) time instead of O(NS), which is thousands of
times faster with up-to-date tasks. Below, we show how we derived the required modifications. It



should be noticed that the modified algorithm produces the same output as the original
Kohonen's SOM algorithm.

M athematical Foundation for the SSOM Algorithm

In this sedion, we first describe our modificaions for weight updates (Step 4 of the SOM
algorithm), followed by our procedure for computing distanceto all nodes (Step 3).

Updating Weightsto Nodes

This subsection shows how to updite weights at O(PS) time. We use aspecial representation for
the weights of nodes. Instead of keeping the adua values of weights wj we keg “scaleable
weights’ denoted by a; and a special “scale” fador f; defined for ead node j. The algorithm
guarantees that at ead training cycle the weights w; can be cmputed by the following
multipli cation:

wij(t) = fi(t) a;(t) 3)

So, the dgorithm does not store or update w; , but instead works with the “scaleable weights’ a;.
It starts with fj(0)=1 for all nodes, and &;(0) = w;(0) for any i and j. Introducing scale fador f;
benefits the performance because e&h time the algorithm requires weights w; to be danged we
have achoice between changing a; or changing fi. We @an always choose the fastest way. It
should be noted that changes in f; affed values w; for all coordinatesi.

The weight update formulain Step 4 of the SOM algorithm can be transformed into two separate
Cases.

ow, (t) +n(t)(0—w, (1)), for all i suchthat x; (t) =0

w (t+1)=1Q _
’ oW; (1) +n(t)(L-w, (1)), for all i such that x, (t) =1

and re-arranged into:

_ 1-n(t))w; (t), for all i such that x (t) =0

w;(t+1) =0 .
(1) +@-n()w; (), for all i such that x (t) =1

1

Interms of a;, and fj, this transformation is expressed as:

1-n(t) f; (t)a; (1), for all i suchthat x;(t) =0

fi(t+ha, (t+1)= () +@-n) f, (1)a, (1), for all i suchthat x, (t) =1 “

We updete f; by the rule:
fi(t+D) =QA-n®)f; (1) (5)

To obtain the update rules for the weights a;;, we substitute the updete rule (5) into updete rule
(4):



1-n(t) f;(t)a; (1), for all i suchthat x;(t) =0

(1-nM)f;(t)a;(t+1)= () +@-n() f, (1)a, (1), for all i suchthat x, (t) =1

By dividing both sides by (1-n(t)) f, (t) we finally obtain:

[ (1), for all i suchthat x; (t) =0

O
3 (t+1)= @% +a,(t), for all i such that x, (t) =1 ©

Sincethe cae x(t)=0 does not change the values for a; we nead to updite only the fador f; (rule
(3)) and the values a&;; corresponding to non-zero coordinates xi(t) in rule (6). That means the time
complexity of our weight adjustment is proportional to the number of non-zero coordinates.
Updates acording to the @ove formulas produce the same values for w; as the traditional SOM
algorithm.

Computing Distance to All Nodes

Step 3 aacounts for the other major part of the cmputation in SOM. Redoing this processis vital
for performance We follow the same objedive of separating zero and non-zero coordinates in
N-1
the input vedor. Throughout our paper, summation % stands for z , for al i such that
X (1)=1

1=0

N-1
X(t)=1. Summation g stands for z , for al i such that x;(t)=0. It is easy to seethat it takes
X (t)=0

10
O(P) time to compute the first one, while the second one takes O(N) time. Our objective is to

convert al transformations into those that are defined by % since they can be computed at
X (1)=1

N-1
O(P) time. If we kept any z components, our implementation would not be dficient and
1=0

scalable since N can be of the order of thousands and grows as O(S), while P isasmall constant.
Using the above notation, the formulain Step 3 of SOM can be re-written the following way:

Zl(xi (t)—vvi,-(t))2 = nggl—wi j (t))2 +Xg:(\)/vi,.2(t) = g:gl—zwi JO+w 2()+ g:;,vif(t) =

- ;El) + Xv%qwi Zn+ ) g;lv. MOE 2XY %Yv' (0 =X%:fl) +§Wi 2(1)- va %Yv' (0=

=S (O S, () +S5(1)

Here, S(t)= %(1) and S, (t)=-2 %vvij(t) can ke omputed at O(P) time. Computing S,



= AZ W, ].2 (t) involvesall coordinates and time consuming. The crrect solution isto updite it at
X

eah cycle instead of computing. We derive the update rule for S(t+1) below by using a; and fj,
as defined in (3) and (6):

S(t+1) = Nz_lvvijz(t+1) = Nz_l(aij(t+1)fj(t+1))2 =

= (&, (t+Df (t+1)* + (a,(t+Df (t+1)* =

X (t+1)=1 X (t¥1)=0
= Z) (&, (t+1)f(t+1)* + (&) f;(0a-n())? =
X (+1)=1 X; (1+1)=0
= (a,(t+D f;(t+1))* + (1-n(t))? (&, f )=
% ((FD=1 % ((7D)=0
= (&,—(Hl)f,-(”l))z+(1—f7(t))2(2_(<’%j(t)f;(t))2— CHOUMU)BE
x ((FD=1 i=0 x (D=1
=S, (t+1) + (1-N)2(S(H) - S (¢ +1)),
where S (t+D)= Y (a,t+Df,(t+D)’and S(t+1)= Z’(aij(t)fj(t))z can both te
x (F)=1 x (7D =1

computed at O(P) time. This implies that S(t) can be updated at O(P) time by using the aove
rule.

What Isthe Gain?

So far, we have shown that computing distance to all nodes (Step 3 in SOM) and upditing
weights of nodes (Step 4) can be implemented in such a way that it takes time proportional to
the number of non-zero coordinates in the input vedor (represented by P), instead of total
number of coordinates (represented by N) Because these two operations need to be performed at
each iteration, the overall learning time for SOM can be drastically reduced while the output is
preserved the same. Our proposed SSOM algorithm is efficient for applications where the
average number of present feaures in a given record is much lower than the tota number of
available feauresin the etire database, i.e., exhibiting the sparse input vedor charaderistic. Our
SOM algorithm takes O(PS time instead of O(§), which can be thousands of times faster with
up-to-day tasks. Since P is amost a constant invariant to the scale S, the resulting time
complexity of SSOM isamost linea: O(S).

It is easy to chedk whether a similar transformation technique can ke gplied when the input
coordinates are red numbers and not limited to O or 1. All the algorithmic improvements remain
the same & long asthe input vedors are sparse.



5. Benchmarking Experiments

The dove SSOM algorithm was implemented on two SOM-based systems developed ealier at
the Illinois DLI projed [39] [13].

Electronic Brainstor ming Comment Classification

Orwig at a [39] described reseach in the gplication of an SOM algorithm to the problem of
classificaion of eledronic brainstorming output and evaluation of the results. Electronic
brainstorming is one of the most productive tools in the eledronic meding system called
GroupSystems [10]. A mgor step in group problem-solving involves the classification of
eledronic brainstorming output into a manageable list of concepts, topics, or issles that can be
further evaluated by the group. Information overload and the agnitive demand of processing a
large quantity of textual data make this g¢ep problematic. Our research built upon previous work
in automating the meeting classificaion process using a Hopfield neural network [10].
Evaluation comparing SOM output with Hopfield and human expert output using the same set of
data found that the SOM performed as well as a human expert in representing term asociation in
the meding output and out-performed the Hopfield algorithm. In addition, recll of consensus
meding concepts and topics using the Kohonen algorithm was equivalent to that of the human
expert. However, predsion of the SOM was poar.

The graphical representation of textual data produced by SOM suggests many opportunities for
improving information organizaion of textual data. Increasing uses of eledronic mail, computer-
based bulletin board systems, and world-wide web services present unique challenges and
opportunities for a system-aided classification approach. Reseach has shown that the Kohonen
SOM can he used to creste “a picture that can represent a thousand (or more) words'
automatically.

A sample clasgfication output (important meding topics) represented by SOM is shown in
Figure 2. Eadh region represents one such topic as determined by SOM; the number of comments
classified under each region is noted in the map. Clicking on a specific region allows the user to
view the comments classified under it. Realers are referred to [39] for more details. Sample
outputs can also be acessed via WWW at: http://ai.bpa.arizona.eduw/gsmap/



Figure 2: SOM output for 202 eledronic meding comments

In order to improve the processing spead of SOM for GroupSystems, we proceeded to
experiment with using SSOM on the same brainstorming comments. The sample eledronic
brainstorming data set for our SSOM bench-marking experiment consisted of 202 small
paragraph-size omments (i.e., 202input vedors). The output layer consisted of a 20-by-10 gid,
(i.e., 200 output nodes). Each input vedor varied in size (25-400terms) and represented the top
terms(in frequency) in the input file. Using a DEC Alpha 3000600 workgtation (200 MHz, 128
MBs RAM) for our experiment, applicaion of the original SOM algorithm took between 55
seoonds and 18 minutes, depending on the vedor size As shown in Table 1 and Figure 3, the
SOM processing time increased proportionally to the size of the input vedor. However, our
SSOM algorithm was invariant to the size of the input vedor. The SSOM processing time ranged
between 41 seconds and 52 seands (only small overhead was involved in initializing larger
inpu vedors).

Although thistest set appeas small in size, the SSOM speed-up (from 1.34 times to 21.73 times)
should be onsidered very important becaise e@h EBS session reals to be andyzed and
classified in real time during adual meetings [10]. The SOM system was often used as an adive



meding fadlitation agent for classifying textual meeing output [9]. A short meding pause of 1-
2 minutes for SSOM generation is considered reasonable. However, waiting for 20 minutes and
more for SOM classification in an adual meding may often disrupt meding process and
dynamics. For longer medting sessons and larger vedor sizes, the SSOM speed-up was found to
be even more significant.



Table 1: Meding comments: processing time & a function of the vector size (number of cycles
= 15,000

vedor size non-optimized (min:seQ optimized (min:sec) spead-up (times)
25 0:55 0:41 134
50 2:06 0:41 3.07
75 3:18 0:42 4.71
10C 4:30 0:43 6.28
12% 5:41 0:43 7.93
15C 6:53 0:43 9.60
17% 8:05 0:43 11.28
20C 9:16 0:46 12.09
225 10:28 0:45 13.96
25C 11:40 0:47 14.89
275 12:51 0:47 16.40
30C 14:03 0:48 17.56
325 1515 0:49 18.67
35C 16:26 0:50 19.72
37¢% 17:38 0:51 20.75
40C 18:50 0:52 2173




Figure 3: Meding comments. processing time as a function of the vedor size
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| nter net Entertainment Homepage Classification

The problems of information overload and vocabulary differences have become more pressing
with the emergence of the increasingly popular Internet services. The main information retrieval
mechanisms provided by the prevailing Internet WWW software ae based on either keyword
seach (e.g., Lycos, Alta Vista) or diredory browsing (e.g., Yahoo!). Chen et a. [13] have
presented reseach which aimed at providing an alternative @ncept-based caegorization and
seach cgoability for WWW servers based on the SOM algorithm. They reported results of
testing multi-layered SOM (MSOM) clustering algorithm to classify Internet homepages
acording to their content. The cdegory hierarchies creaed could serve to partition the vast
Internet services into subjed-specific caegories and databases and improve Internet keyword
seaching and/or browsing.

In this dudy we used the same mllection of about 10,000 entertainment-related homepages
(extraded by a spider running on the entertainment portion of the Yahoo! diredory). The top-
most clasgfication output (entertainment-related topics) represented by SOM is shown in Figure
4. Eadch region represents an important entertainment-related topic (caegory) determined by
SOM and the number of homepages classified under each region was also noted in the map.
Ead region can be clicked on to view a more detailed SOM map representing sub-topics
classified under the region. The threshold for the lowest-level map was st to 100homepages. By
clicking the lowest-level map, a user could view the ad¢ual homepages. Realers are referred to
[13] for more detals. Sample outputs can aso be accesed via WWW  at:
http://ai.bpa.arizona.edu/ent/
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Figure 4: First-level map for 10,000 entertainment-related homepages

The same DEC Alpha 3000600 was used for the SSOM experiment on Internet homepages.
Only the first-level map was used for comparison. (Producing maps of all levels took 4-5 times
the first-level map processing time.) As shown in Table 2 and Figure 5, processing time for SOM
varied significantly acording to the input vedor size (25 to 400 coordinates), from 10 minutes
and 10 seoonds to 190 minutes and 20 seconds. Using SSOM, the processing time ranged
between 8 minutes and 12 seconds and 12 minutes and 33 seconds. As plotted in Figure 5,
SOM was largely invariant to the vedor size while SOM process time was linealy
proportional to the vedor size The SOM speead-up wasl5-fold when vedor size was 400

Due to the time requirement for testing the SOM algorithm, we were unable to continue to
increase the veaor size beyond 400 However, the same speed-up conclusion should hold for
large vedor sizes. For the large-scale Illinois DLI test collections, which involve several million
Internet homepages and journal abstrads (5-10 GBs) [47], significantly larger vedor sizes (often
on the order of several thousands) are neealed, thus demanding the SSOM classificaion
approad.



Table 2: Internet homepages: processing time & a function of the vedor size (number of cycles
= 130000

vedor size non-optimized (min:seQ optimized (min:sec) spead-up (times)
25 10:10 8:12 123
50 2210 8:29 2.61
75 34:11 8:46 3.90
10C 46:12 9:04 5.10
12% 5812 9:21 6.22
15C 70:13 9:39 7.28
17% 8214 9:56 8.28
20C 94:14 10:13 9.22
225 10615 10:31 10.10
25C 11816 10:48 10.96
275 13016 11:06 11.74
30C 14217 11:23 1250
325 15418 11:40 13.23
35C 16618 11:58 1390
37¢E 17819 12:15 14.56
40C 19020 12:33 15.17




Figure 5: Internet homepages: processing time & a function of the vedor size
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L ar ge Scale Experiment

In this sedion, we describe an experiment with a large scde SSOM. We built a map for a
colledion that would be impossible to build on currently available hardware without using the
optimized SOM tedchnigue. We used the documents from the very well known COMPENDEX
colledion, which consists of abstrads from such computing-related fields, such as eledricd
engineaing, computer science, information systems etc. The mllection has 247,721 dbcuments
and the size of the wllection after we gplied indexing was 360 megabytes. After indexing, we
extraded about 160000 unique terms, not counting words in a stop-word list or words that
appeaed fewer than 3 times. Of those, we seleded 10000frequently occurring terms as the most
representative. We dhose more frequently occurring terms since they provided the most overlap
in the document representations and we found this to be usually beneficial for the quality of
maps. We built a map of 30 by 30 nodes and performed 4,500,000 training cycles, so eat
document was presented about 15 times. The entire processtook 15,7 CPU hours, about 24 hours
of real time. We used the same DEC Alpha macdhine for this experiment as for the experiments
described above. Our analysis of the algorithms presented ealier in this paper suggests that the
straightforward tedhnique would take @out 1000times as much time, which corresponds to 625
CPUdays. Even with a supercomputer speed-up ratio of about 40 to 1, this task could never be
finished in areasonable amount of time.

6. Conclusion and Discussion

This paper presents our reseach efforts to develop a scalable and efficient textual classification
algorithm based on Kohonen's self-organizing feaure map (SOM) algorithm. Our data structures
and implementation take advantage of the sparsity of coordinates in the document input vedors
and reduce the SOM computational complexity by several orders of magnitude. The resulting
time complexity of our algorithm is proportional to the average number of non-zero coordinates
inan input vedor rather than to input vedor size

Our reseach was part of the Illinois DLI projed, one of the long-term goals of which is to
develop scdable and robust caegorizaion tedniques for large-scale textual and multimedia
documents. Our current reseach efforts include:

» Algorithmic improvement: Several domain-independent SOM optimizaion techniques
reported in ealier studies [43] [28] are under consideration. We believe that by
incorporating these tedniques in SSOM we may be able to reduce aother order of
computational complexity.

e SOM paradlelization: As discussed ealier, we ae in the process of implementing
parallel SSOM applicaions on the 24-node SGI Power Challenge and 24-node Convex
Exemplar supercomputers, made available through the National Center for
Supercomputing Applicaions (a partner of the Illinois DLI projed) [14]. Our initial
implementation results showed a 10-fold improvement on a 24-node Convex Exemplar.



However, we dso experienced significant file 1/0O bottlenedk and inter-hypernode
communicaion and synchronizaion problems in the shared-memory multiprocessor
(SMP) based Convex Exemplar. More systematic benchmarking is under way.

« S3OM for visual thesaurus: In conjunction with a University of California & Santa
Barbara (UCSB) DLI projed that focuses on geo-referenced colledions, we ae also in
the process of adopting SSOM for large-scale aeia photo and satellite image
classificaion based on texture and region extradion algorithms developed ealier at
UCSB [35].
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