
A Scalable Self-organizing Map Algorithm
for Textual Classification: A Neural Network Approach to

Thesaurus Generation

Dmitri G. Roussinov

Department of MIS, Karl Eller Graduate School of Management, University of Arizona,
McClelland Hall 430ww, Tucson, Arizona, 85721, E-mail : dmitri@bpa.arizona.edu

Hsinchun Chen

Department of MIS, Karl Eller Graduate School of Management, University of Arizona,
McClelland Hall 430ww, Tucson, Arizona, 85721, E-mail : hhcchheenn@@bbppaa..aarriizzoonnaa..eedduu

Abstract:

The rapid proliferation of textual and multimedia online databases, digital li braries, Internet
servers, and intranet services has turned researchers' and practitioners' dream of creating an
information-rich society into a nightmare of info-gluts. Many researchers believe that turning an
info-glut into a useful digital library requires automated techniques for organizing and
categorizing large-scale information.

This paper presents research in which we sought to develop a scaleable textual classification and
categorization system based on the Kohonen's self-organizing feature map (SOM) algorithm. In
our paper, we show how self-organization can be used for automatic thesaurus generation.

Our proposed data structure and algorithm took advantage of the sparsity of coordinates in the
document input vectors and reduced the SOM computational complexity by several order of
magnitude. The proposed Scaleable SOM (SSOM) algorithm makes large-scale textual
categorization tasks a possibility. Algorithmic intuition and the mathematical foundation of our
research are presented in detail. We also describe three benchmarking experiments to examine
the algorithm's performance at various scales: classification of electronic meeting comments,
Internet homepages, and the Compendex collection.

1. Introduction
According to the Webster's Ninth New Collegiate Dictionary, classification is defined as
``systematic arrangement in groups of categories according to established criteria.''
Mathematicians such as Duda and Hart explained that ``the problem of classification is basically
of partitioning the feature regions, one region for each category'' [1177].

The potential and importance of system-aided classification techniques have never been more
evident than in the increasing presence of digital libraries, online databases, and Internet/intranet
applications. The need to have topical, subject-specific structures (taxonomy of categories) for
many of these emerging large-scale information sources and the difficulty of manually creating
and maintaining such structures have made classification techniques promising and appealing.

The resurgence of neural network based classification techniques, some clustering or
unsupervised learning in nature [1177], recently have attracted significant attention by researchers
[3333]. Although computationally extensive, this class of techniques, which is based on network
data structures and statistical algorithms, is generally flexible and powerful and is suited for
parallelization. The self-organizing feature map (SOM) algorithm, developed by Kohonen [2266]
[2277], in particular, has been widely used in many different engineering and scientific applications
such as image recognition, signal processing, and connectionist natural language processing. In
addition, SOM is also widely used in visualization as a dimension (feature) reduction tool.

The robustness of the SOM algorithm and its appealing visualization effects have also made it a
prime candidate in several large-scale information categorization and visualization projects.
Most noticeably, the Kohonen group has created and maintained a WEBSOM server which
categorizes several thousand Internet newsgroup items [2222]. The Illinois Digital Library
Initiative project [4488] [4477] has also adopted and revised SOM for textual meeting comment
categorization [3399] and multi-layered SOM classification of about 10,000 Internet homepages
[1133].

One of the major drawbacks of neural network computation, including the SOM algorithm, has
been its computational complexity. Training instances are often presented multiple times and
network performance is achieved only after gradual modification of network connection/link
weights. Our experience in adopting SOM in several mid-size information visualization and
categorization projects (10-100 MBs, several to hundreds of thousands of abstract-size
documents) confirmed this general observation [1133]. The computational complexity of the SOM
algorithm has rendered it infeasible for large-scale applications (1-10 GBs, mil lions of
documents, e.g., the entire searchable Internet WWW homepages). In order to improve the
scalabil ity of the SOM approach to textual classification, a more eff icient algorithm is needed.

This paper presents our research efforts to develop a scalable and efficient textual classification
algorithm based on Kohonen’s SOM algorithm. Our implementation took advantage of the
sparsity of coordinates in typical document input vectors and reduced the SOM computational
complexity by several orders of magnitude. Although our technique is problem-dependent (i.e.,
suitable for applications that exhibit sparse input vectors), we believe it can be easily combined
with other more general and domain-independent techniques reported in other research.

Section 2 presents an overview of relevant classification literature. Section 3 presents Neural
Network approach to Thesaurus generation. The original SOM algorithm and our optimized
SSOM algorithm are discussed in Section 4. Algorithmic intuition and the mathematical
foundation of the proposed SSOM algorithm are also presented. Section 5 presents
benchmarking results for three textual classification applications. Ongoing and future research
efforts are summarized in Section 6.

2. Textual Classification: Literature Review
Duda and Hart [1177] have explained the difference between supervised learning, which primarily
calls for parameter estimation, and unsupervised learning, which represents clustering
techniques:

The distinction is that with supervised learning we know the state of nature (class label)
for each sample, whereas with unsupervised learning we do not. As one would expect,
the problem of unsupervised learning is the more difficult one.

Their stated reasons for the importance of unsupervised learning still apply very well in textual
classification applications [1177] [77]. First, the labeling of a large set of sample patterns can be
costly and time consuming. The recent example of the Yahoo! directory for Internet homepages
is a testament to such an effort. Second, the characteristics of the patterns can change slowly over
time. This is particularly true in the context of most digital libraries and Internet/intranet
applications. Finally, it may be valuable to gain some insight into the structure of the a
collection. System-generated classifications could provide a good strawman for further
refinement and analysis.

A significant number of text-based classification algorithms for documents are based on
supervised learning techniques such as Bayesian probability, decision trees or rule induction,
linear discriminant analysis, logistic regression, and backpropagation-like neural networks [3300]
[22] [11] [4499]. Other text categorization studies have relied on machine-readable dictionaries [3311]
and natural language processing techniques [4411].

We also found use of unsupervised clustering techniques in textual analysis applications. For
example, Botafoga used the graph theoretic definition of k-edge-components to define natural
clusters in hypertext systems [44]. Iwayama and Tokunaga compared several statistical clustering
methods (e.g., single-link and Ward's) and Bayesian clustering algorithms for text categorization
[2255]. Burgin also compared the retrieval effectiveness of five hierarchical clustering methods and
confirmed the single-link clustering method to be inferior to all four other methods [55]. In our
research, our focus is on unsupervised learning and clustering techniques for textual
classification.

Classification of textual documents requires grouping (or clustering) similar concepts/terms as a
category or topic, a process calling for cluster analysis [1188]. Two approaches to cluster analysis
exist: the serial, statistical approach and the parallel, neural network approach. In this section,
we provide only a brief summary of the conventional statistical approach. (Readers are referred
to [1177] [1188] for more details.) However, because our ongoing research is based on an
unsupervised neural network algorithm, we provide a more detailed review of the newer parallel,

neural network approach to textual classification.

The Serial, Statistical Approach
Rasmussen [4400] defines cluster analysis as ``a statistical technique used to generate a category
structure which fits a set of observations. The groups which are formed should have a high
degree of association between members of the same group and a low degree between members
of different groups.'' She points out that cluster analysis is a technique that has significant
potential for textual analysis.

Automatic document classification involves determining a document representation structure and
methods for determining similarities between documents. The hierarchical clustering of
documents can be carried out either divisively or agglomeratively [4466]. Divisive clustering breaks
one complete cluster down into smaller pieces. In agglomerative clustering ``individual item
similarities are used as a starting point and a gluing operation collects similar items, or groups,
into larger groups [4466].''

Using these techniques, classes of similar objects are basically found by doing pairwise
comparisons among all of the data elements. These clustering algorithms are serial in nature in
that pairwise comparisons are made one at a time and the classification structure is created in a
serial order.

The Parallel, Neural Network Approach
A new approach to addressing clustering and classification problems is based on the
connectionist approach, or neural network computing. Algorithms based upon neural networks
are parallel in that multiple connections among the nodes allow for independent, parallel
comparisons.

Neural networks are patterned after the biological ganglia and synapses of the nervous system.
The concept is not new - McCulloch and Pitts suggested the description of a neuron as a logical
threshold limit in 1943 [3366]. The essential element of the neural network is the neuron. A typical
neuron j receives a set of input signals from other connected neurons, xi, each of which is
multiplied by a synaptic weight factor of wij. All activation weights are then summed to produce
the activation level for neuron j. Many neural network topologies and error correction (learning)
algorithms have been developed since the early 1980s [3333].

The adjustments of the weights of the nodes of the neural network enable the total network to
``learn'' in the sense that a neural network's performance can be adjusted to fit a known set of
data characteristics. In supervised learning, a set of training examples with class labels is
presented, one by one, to the network. The network then calculates outputs based on its current
input. The resulting output is then compared with a desired output for that particular input
example. The network weights are then adjusted to reduce the error. In unsupervised learning,
network models are first presented with an input vector from the set of possible network inputs.
The network learning rule adjusts the weights so that input examples are grouped into classes
based on their statistical properties [1155] [4444].

Several information science researchers have developed neural network clustering algorithms for

textual applications. MacLeod and Robertson [3344] present a two-layer neural network and an
algorithm that is used for document clustering. This algorithm adopts an unsupervised approach
to clustering by way of partitioning. Inputs are binary-valued vectors representing documents.
The algorithm uses two similarity measures in order to allow proof of algorithmic behavior,
cluster stability, and characterization of final clusters. The algorithm is multi-pass in that
documents are repeatedly read into the network until two consecutive passes produce identical
classifications for each document (convergence). Only those clusters that are successful in
classifying one or more documents during the last pass are active. Inactive clusters do not take
part in any subsequent retrieval operations.

In [1100], Chen et al. describe an algorithm for concept classification of electronic brainstorming
comments that combines automatic indexing of the electronic brainstorming comments, term co-
occurrence concept space generation, and a Hopfield neural network classifier [2233]. Results of
experiments comparing the output of their algorithm with human experts and novices found that
the Hopfield classifier performed as well as the novices but two human experts out-performed
the novices and Hopfield classifier significantly. Reasons given for the performance differences
centered on the abil ity of the experts to associate terms more appropriately.

The Self-organizing Map Approach
In addition to these unique neural network based clustering algorithms for information science
applications, prior research in neural networks has strongly suggested the Kohonen self-
organizing feature map (SOM) as a good candidate for clustering textual documents.

Each Output Node is a vector of N weights

Kohonen
Layer

Input Layer -- Each Node a vector
representing N terms.

Figure 1: Kohonen SOM topology

Kohonen based his neural network on the associative neural properties of the brain [2266]. The
topology of the Kohonen SOM network is shown in Figure 1. This network contains two layers
of nodes - an input layer and a mapping (output) layer in the shape of a two-dimensional grid [66]
[2211]. The input layer acts as a distribution layer. The number of nodes in the input layer is equal
to the number of features or attributes associated with the input. Each node of the mapping layer
also has the same number of features as there are input nodes. Thus, the input layer and each
node of the mapping layer can be represented as a vector which contains the number of features

of the input. The network is fully connected in that every mapping node is connected to every
input node. The mapping nodes are initialized with random numbers. Each actual input is
compared with each node on the mapping grid. The ̀ `winning'' mapping node is defined as that
with the smallest Euclidean distance between the mapping node vector and the input vector. The
input thus maps to a given mapping node. The value of the mapping node vector is then adjusted
to reduce the Euclidean distance. In addition, all of the neighboring nodes of the winning node
are adjusted proportionally. In this way, the multi-dimensional (in terms of features) input nodes
are mapped to a two-dimensional output grid. After all of the input is processed (usually after
hundreds or thousands of repeated presentations), the result should be a spatial organization of
the input data organized into clusters of similar (neighboring) regions. Many engineering and
scientific applications which involve numeric data (e.g., image recognition, signal processing)
have successfully adopted the SOM approach to parallel clustering [2277].

Several recent studies adopted the SOM approach to textual analysis and classification. Ritter
and Kohonen [4422] applied the Kohonen SOM to textual analysis in an attempt to detect the
logical similarity between words from the statistics of their contexts. Their first approach
represents context of terms as a set of attribute values that occur in conjunction with the words.
The second approach defines context by the sequences in which words occur, without
consideration of any associated attributes. They analyze simple verbal statements consisting of
nouns, verbs, and adverbs and suggest that ``such phrases or clauses involve some of the
abstractions that appear in thinking, namely, the most common categories, into which the words
are then automatically grouped [4422].'' They argue that a similar process may be at work in the
brain. Typical self-organizing maps reflect metric distance relations between patterned
representation vectors. Ritter and Kohonen associate this with lower levels of perception. More
recently, the Kohonen group has created and maintained a WEBSOM server that demonstrates
its abil ity to categorize several thousand Internet newsgroup items [2222]. An intuitive two-
dimensional graphical user interface was also created for WEBSOM browsing.

Mikkulainen [3388] developed DISCERN (DIstributed SCript processing and Episodic memoRy
Network) as his dissertation project. DISCERN is a prototype of a subsymbolic natural language
processing system that shows how script instantiation and inferences can be learned from
examples by a parallel distributed processing architecture that is based upon a Kohonen self-
organizing map.

The NSF/ARPA/NASA-funded Illi nois Digital Library Initiative project [4488] [4477] has also
adopted and revised SOM for textual document categorization and visualization [3399] [1133]. The
SOM-generated categories were found to be comparable to those generated by human subjects
[3399]. (Details about these studies are to be summarized in later sections.)

Lin [3322] used SOM to classify documents for information retrieval. In this application,
documents are represented as vectors of binary values. The resulting map provides an intuitively-
appealing organization of the input documents. The documents are classified according to their
content and conceptual regions are formed and named on a two-dimensional grid. A prototype
system was developed based on the Macintosh's HyperCard. Merkl and Tjoa [3377] suggested
using SOM for organizing software libraries. H. Ichiki et al. [2244] developed multi-layer semantic
maps for categorization. The same idea was also adopted in the MSOM (multi-layered SOM)
algorithm reported in [1133]. By allowing presentations of multiple layers, SOM was able to
categorize mid-scale collections (i.e., several to hundreds of thousands of documents).

Although the categorization robustness and graphical friendliness of the SOM-family of
algorithms have been shown in several recent studies, the computational complexity of such
algorithms has caused severe implementation problems, especially for mid-to-large-scale
applications. For a mid-scale application such as the Internet homepage categorization project
reported in [1133] (10,000 homepages) about 10 hours of processing on a DEC Alpha 3000/600
workstation (200 MHz, 128 MBs RAM) were required.

Several researchers have tried to optimize SOM, and general-purpose SOM optimization
techniques often have targeted the key steps of the algorithm. Rodriguez and Almeida [4433]
suggested starting with a small grid and adding nodes as the net begins to converge. The
locations of the added nodes were interpolated from the locations of older nodes. The
improvement observed varied from marginal for small applications to 10-fold for large networks.
Koikkalainen et al. [2288] suggested a way to improve the process of finding the winning node in
maps which are almost converged by replacing the exhaustive search method in SOM with an
heuristic search technique for finding the winning node.

Other researchers have attempted to improve SOM through parallelization. Demian and Mignot
[1166] optimized SOM on parallel computers, testing both SIMD and MIND architectures. They
assigned blocks of neurons (nodes) to each processor. The reported performance improvement
was about 10-fold for 128 processors. Recently, Chen and Yang [1144] also paralleled SOM on
shared-memory multiprocessor (SMP) Convex Exemplar supercomputers. Multiple processors
were used to find the winning node and to update weights of a winning neighborhood. A 10-fold
improvement was also noted for SOM implemented on a 24-processor Exemplar.

3. A Neural Network Approach to Automatic
Thesaurus Generation
Literature Review
The importance of thesauri in electronic communication was noticed dozens of years ago. A
thesaurus can help when extending queries in searching for information, when selecting words to
express ideas, or when switching vocabularies across domains while browsing a collection of
documents. Furnas at. al [1199] showed that different people use the same term to describe the
same object with a probability less than 20%. A typist being asked to name an editing operation,
might use the words delete, change, remove, spell-check, make into, etc. Atkins and Levin [33]
suggested that meanings may not be neat little packages attachable to a word, but a blending
from one dictionary sense to another. A good overview of the history of automatic thesaurus
construction can be found in Gerfenstette's book, ''Exploring in Automatic Thesaurus Discovery''
[2200]. He concludes that solving the problem by hand (manually creating a thesaurus) is cost-
prohibitive. It is feasible only when the vocabulary is 1) limited 2) known ahead of time and 3)
there exists a person or a group motivated to document exhaustively all the ways in which words
can be used. Manually created vocabularies are typically either very general and static (like
Webster's) or small and domain dependent (for example, MEDLINE).

A number of research efforts have used knowledge-poor approaches for automatic thesaurus
generation. Lewis et al., [20] using Chemistry Ph.D. titles as documents, showed that synonyms

tend never to occur together, but often tend to co-occur with the same set of other title words.
Justeson & Katz [4455] have demonstrated that, over large corpora, antonymous adjectives tend to
co-occur in the same sentence much more often than frequency-based probabil ity would indicate.
According to Grefenstette [2200] there are three problems with co-occurrence statistical methods.
1) There is need for granularity. The technique becomes parametric since it depends greatly on
the size of the text window for selection of words considered relevant. Using huge windows is
computationally expensive. Small ones discard valuable information. 2) Similar concepts may
never happen to co-occur. For example a document might have either tumor or tumour but not
both. A document would have either car or vehicle but not often both of them nearby. 3) They
are computationally expensive. Typically, the computational complexity grows as O(N2) with
number of terms N.

This probably explains why many researchers turned to neural network techniques for their
processing. Neural networks are not considered parametric techniques. They do not provide a
statistical model, but they do not need as many assumptions as do classical statistical models.
Patterned after associative properties of a living brain, neural networks can be trained to discover
statistical significance, to perform classifications, and to visualize information. Neural networks
are very simple to implement. Neural mechanisms can be also easily utilized in parallel
hardware. Kwok [2299] trained a three-layer neural network in an attempt to reduce the semantic
space to a limited number of axes represented by the hidden layer. One of the significant
drawbacks of this technique is that it necessitates manually created relevance judgment.

Kwok's technique falls into the category of supervised learning. On the contrary, the idea of
unsupervised learning is that relevance judgments are already present in text. If two terms enter
the same sentence they are relevant to some degree. One of the very well-known and frequently
used techniques for unsupervised learning is self-organization, described in the previous section.
We next show how self-organization can be used as an automatic thesaurus generation tool.

SSOM as a Thesaurus Tool
Below, we explain how we use Kohonen's SOM as a tool for extracting semantic relationships
between words and creating a hierarchy of categories. We use the abbreviation SSOM, which
stands for Scaleable Self-organizing Map, to distinguish our algorithm from the original one
developed by T. Kohonen.

Kohonen's SOM is very well known as a clustering and dimension reduction tool. Clustering can
be used for categorization of input vectors. Dimension reduction can be used for visualization
and for reducing information in order to ease search, storage or processing of another kind. In
Kohonen's implementation of SOM for categorizing Internet documents (WEBSOM) [22] there
are no automatically created categories. Users are expected to label the map manually to produce
meaningful categories. Our algorithm creates the labels automatically. For this, we build
hierarchical Kohonen's maps. We produce a hierarchical taxonomy of the clustered documents as
well as the concepts discovered in them. We do it similarly to the way it has been described in
Chen et al. [8]. We create a label for a node by assigning the term that corresponds to the largest
coordinate in the representation of the node, called the winning term. Neighboring regions
having the same winning terms are merged to produce regions. The winning term is designated
as the category (concept) for the entire region. Documents belonging to the same categories are

recursively used to produce smaller maps corresponding to a deeper level in the resulting
hierarchy. Our SSOM algorithm gives a hierarchy of concepts, which is also called a thesaurus,
and a hierarchy of documents. A hierarchy can be browsed manually or used as an extension tool
for search. It is easy to see that the concepts are ordered from more general concepts (top) to
more narrow ones (bottom).

We should emphasize that because our SSOM produces hierarchies of documents and of terms
by means of the same learning process, it is not biased toward either of these two objectives.
Historically, in automatic semantic analysis, the two objectives have been separate: documents
have been used as attributes to cluster terms or terms have been used as attributes to cluster
documents. SSOM uses the same information to create hierarchies of documents and of
concepts.

Since SSOM is a neural network technique, an assumption of statistical independence of terms is
not required. As a result of self organization, the vector space becomes quantified. Each quantum
(node in the map) is represented by a spectrum of keywords, each with its own weight. We call
this combination of terms a concept. Latent Semantic Indexing (LSI) [9,10] is another approach,
one that makes use of semantic axes that operate on concepts. In LSI, each semantic axis is also a
combination of terms with specified weights. It should be noted that our SSOM gives each
concept a label, which LSM does not do.

Another statistical property of Kohonen's SOM is that the density of nodes in the vector space
resembles the distribution density of input vectors in the concept space. Bigger regions
correspond to the concepts most frequently represented in input documents.

4. A Scaleable Self-organizing Map
Algorithm for Textual Classification
The scaleable self-organizing map (SSOM) implementation that we have proposed takes
advantage of the input vector sparseness that exists in most textual applications. Other general-
purpose optimization techniques discussed in previous research and algorithmic paralleling can
also be implemented in conjunction with the proposed SSOM algorithm.

The SOM Algorithm for TTeexxttuuaall Classification and Time
Complexity
The proposed SSOM algorithm is based on the conventional SOM algorithm developed by
Kohonen [2266] [2277]. A sketch of a revised SOM algorithm for textual classification [1133] [3399] is
summarized below:

1. Initialize input nodes, output nodes, and connection weights: Use the top (most frequently
occurring) N terms as the input vector and create a two-dimensional map (grid) of M output
nodes (say a 20-by-10 map of 200 nodes). Initialize weights wij from N input nodes to M output
nodes to small random values.

2. Present each document in order: Describe each document as an input vector of N

coordinates. Set a coordinate to 1 if the document has the corresponding term and to 0 if there is
no such term. Each document is presented to the system several times.

3. Compute distance to all nodes: Compute Euclidean distance dj between the input vector and
each output node j:

21

0

))()((∑
−

=
−=

N

i
ijij twtxd (1)

where xi(t) can be 1 or 0 depending on the presence of i-th term in the document presented at
time t. Here, wij is the vector representing position of the map node j in the document vector
space. From a neural net perspective, it can also be interpreted as the weight from input node i to
the output node j

4. Select winning node j* and update weights to node j* and its neighbors: Select winning
node j*, which produces minimum dj. Update weights to nodes j* and its neighbors to reduce the
distances between them and the input vector xi(t):

))()1()(()()1(twtxttwtw jiijiji −++=+ η (2)

After such updates, nodes in the neighborhood of j* become more similar to the input vector xi(t).
Here, η(t) is an error-adjusting coeff icient (0 < η(t) < 1) that decreases over time. (See [2266][3333]
for the algorithmic details of neighborhood selection and adjustment.)

5. Label regions in map: After the network is trained through repeated presentations of all
documents (each document is presented at least 5 times), assign a term to each output node by
choosing the one corresponding to the largest weight (winning term). Neighboring nodes which
contain the same winning terms are merged to form a concept/topic region (group). Similarly,
submit each document as input to the trained network again and assign it to a particular concept
in the map. The resulting map thus represents regions of important terms/concepts with the
documents assigned to them. Concept regions that are similar (conceptually) appear in the same
neighborhood. Similar documents are assigned into same or similar concepts.

Steps 2-4 are repeated many times for each document and thus account for most of the
processing time required. Steps 3 (compute distance to all nodes) and 4 (update weights) require
iterations through all coordinates in the input vector. The processing time T for the conventional
SOM is proportional to the number of document presentation cycles (Step 2) and the vector size:

T = O(NC),

where N is the input vector size and C is the number of document presentation cycles.

For textual categorization, input vector size can be as large as the total number of unique terms in
the entire collection. In our previous experiments, we have found that the number of unique
terms for mid-scale collections (10-50 MBs) after applying thresholds (for example, a term
appearing more than 2 times) can be as high as tens or hundreds of thousands [1122] [1111]. By
observing the document collections that we have analyzed and that have been mentioned in the
literature, for example, Grefenstette’s works on automatic thesauri [20], it is possible to conclude
that the number of unique terms in a collection is typically proportional to the size of a
collection. Representing the size of a collection as S, we can define N in terms of S as N = O(S).

Similarly, because each document is presented multiple times, C can be represented by S as C =
O(S). Thus, the total processing time T could be estimated as:

T = O(NC) = O(S2)

Given the fact that the size of text collections targeted by automatic processing grows
exponentially over time, we fear that even continuously improving computer hardware (e.g.,
parallel supercomputers) will not be able to build SOMs using traditional approach. The
conventional SOM's time complexity of ``square of the size of collection'' is deemed un-
scaleable. We believe that even parallel processing on the prevail ing supercomputers will not
resolve this algorithmic problem [1111].

Based on extensive experimentation [3399] [1133] and recent analyses of the characteristics of textual
classification, we noticed that sparsity of the input vector stood out as a prime candidate for
SOM optimization. It is evident that for large-scale textual collections a vast majority of
coordinates in the input vectors are zeros (non-existence of a given term) and only very few are
ones (existence of a given term). Due to the large number of unique terms in mid-to-large-scale
collections (and thus large input vector size), almost all documents could be represented by a
sparse vector of a few 1-s, plus mostly 0-s. Sparse vectors or matrices are often candidates for
optimization in software engineering and operations research. We also noted that such an
optimization technique has been adopted in automatic linguistic thesaurus generation [2200].

Intuition Behind the Technique
Below, we present some intuitive consideration of why such an improvement is possible. More
rigorous proof is presented in the succeeding section.

Using sparseness of input vectors is very typical in the textual analysis domain [20]. It is easy to
notice that the vast majority of coordinates in the input vectors (documents) are 0-s, and only
very few are 1-s. So, the typical input vector may look like this:

…000000000100000110000000000010000001000001…

This is because in each document most of the terms are missing and only a few are present.

The self-organization algorithm consists of many training cycles. Each cycle involves only one
input vector. We know that an input vector is typically very sparse. So, the changes in the map
due to each input are relatively small . To reflect the sparseness present in the input vectors we
use special data structures. We represent input vectors as sets consisting of all their non-zero
coordinates. Each non-zero coordinate is essentially a pair (x, i), where x is the coordinate value
and i specifies the axis. If the coordinate is not in the set, its value is equal to 0. This approach
significantly reduces the amount of information to be stored and makes processing much faster.
The next section shows how it can be done.

Our objective is to modify the SOM algorithm so as to be able to compute distances to all nodes
(Step 3) and update the weights of nodes (Step 4) at a number of iterations proportional to the
number of non-zero coordinates in the input vector, represented here as P. Since we were able to
do so, we can obtain an algorithm that takes O(PS) time instead of O(NS), which is thousands of
times faster with up-to-date tasks. Below, we show how we derived the required modifications. It

should be noticed that the modified algorithm produces the same output as the original
Kohonen’s SOM algorithm.

Mathematical Foundation for the SSOM Algorithm
In this section, we first describe our modifications for weight updates (Step 4 of the SOM
algorithm), followed by our procedure for computing distance to all nodes (Step 3).

Updating Weights to Nodes

This subsection shows how to update weights at O(PS) time. We use a special representation for
the weights of nodes. Instead of keeping the actual values of weights wij we keep “scaleable
weights” denoted by aij and a special “scale” factor fj defined for each node j. The algorithm
guarantees that at each training cycle the weights wij can be computed by the following
multiplication:

wij(t) = fj(t) aij(t) (3)

So, the algorithm does not store or update wij , but instead works with the “scaleable weights” aij.

It starts with fj(0)=1 for all nodes, and aij(0) = wij(0) for any i and j. Introducing scale factor fj

benefits the performance because each time the algorithm requires weights wij to be changed we
have a choice between changing aij or changing fj. We can always choose the fastest way. It
should be noted that changes in fj affect values wij for all coordinates i.

The weight update formula in Step 4 of the SOM algorithm can be transformed into two separate
cases:





=−+

=−+
=+

1)()),(1)(()(

0)()),(0)(()(
)1(

txthatsuchiallfortwttw

txthatsuchiallfortwttw
tw

iijij

iijij

ij η
η

and re-arranged into:





=−+

=−
=+

1)(),())(1()(

0)(),())(1(
)1(

txthatsuchiallfortwtt

txthatsuchiallfortwt
tw

iij

iij

ij ηη
η

In terms of aij, and fj, this transformation is expressed as:





=−+

=−
=++

1)(),()())(1()(

0)(),()())(1(
)1()1(

txthatsuchiallfortatftt

txthatsuchiallfortatft
tatf

iijj

iijj

ijj ηη
η

(4)

We update fj by the rule:

)())(1()1(tfttf jj η−=+ (5)

To obtain the update rules for the weights aij, we substitute the update rule (5) into update rule
(4):





=−+

=−
=+−

1)(),()())(1()(

0)(),()())(1(
)1()())(1(

txthatsuchiallfortatftt

txthatsuchiallfortatft
tatft

iijj

iijj

ijj ηη
η

η

By dividing both sides by)())(1(tft jη− we finally obtain:









=+
−

=
=+

1)(),(
)())(1(

)(

0)(),(

)1(
txthatsuchiallforta

tft

t

txthatsuchiallforta

ta
iij

j

iij

ij

η
η (6)

Since the case xi(t)=0 does not change the values for aij we need to update only the factor fj (rule
(3)) and the values aij corresponding to non-zero coordinates xi(t) in rule (6). That means the time
complexity of our weight adjustment is proportional to the number of non-zero coordinates.
Updates according to the above formulas produce the same values for wij as the traditional SOM
algorithm.

Computing Distance to All Nodes

Step 3 accounts for the other major part of the computation in SOM. Redoing this process is vital
for performance. We follow the same objective of separating zero and non-zero coordinates in

the input vector. Throughout our paper, summation ∑
=1)(txi

stands for ∑
−

=

1

0

N

i

, for all i such that

xi(t)=1. Summation ∑
=0)(txi

 stands for ∑
−

=

1

0

N

i

, for all i such that xi(t)=0. It is easy to see that it takes

O(P) time to compute the first one, while the second one takes O(N) time. Our objective is to

convert all transformations into those that are defined by ∑
=1)(txi

since they can be computed at

O(P) time. If we kept any ∑
−

=

1

0

N

i

components, our implementation would not be efficient and

scalable since N can be of the order of thousands and grows as O(S), while P is a small constant.
Using the above notation, the formula in Step 3 of SOM can be re-written the following way:

)()()(

)(2)()1()(2)()()1(

)())()(21()())(1())()((

321

1)(

1

0

2

1)(1)(1)(0)(

22

1)(

0)(

2

1)(

2

0)(

2
2

1)(

21

0

tStStS

twtwtwtwtw

twtwtwtwtwtwtx

tx
ji

N

i
ji

txtx
ji

tx tx
jiji

tx

tx
ji

tx
jiji

tx
ji

tx
ji

N

i
jii

iiii ii

iiii

++=

=−+=−++=

=++−=+−=−

∑∑∑∑∑ ∑∑

∑∑∑∑∑

=

−

==== ==

====

−

=

Here, ∑
=

=
1)(

1)1()(
txi

tS and ∑
=

−=
1)(

3)(2)(
tx

ji

i

twtS can be computed at O(P) time. Computing S2

= ∑
ixAll

ji tw)(2 involves all coordinates and time consuming. The correct solution is to update it at

each cycle instead of computing. We derive the update rule for S2(t+1) below by using aij and fj,
as defined in (3) and (6):

)),1()(())(1()1(

)))()(())()((())(1())1()1((

))()(())(1())1()1((

)))(1)(()(())1()1((

))1()1(())1()1((

))1()1(()1()1(

2
2

2

1)1(

1

0 1)1(

2222

1)1(0)1(

222

1)1(0)1(

22

1)1(0)1(

22

1

0

2
1

0

2
2

+′−−++′=

=−−+++=

=−+++=

=−+++=

=+++++=

=++=+=+

∑ ∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑∑

=+

−

= =+

=+ =+

=+ =+

=+ =+

−

=

−

=

tStSttS

tftatftattfta

tftattfta

ttftatfta

tftatfta

tftatwtS

tx

N

i tx
jjijjijji

tx tx
jjijji

tx tx
jjijji

tx tx
jjijji

N

i
jji

N

i
ji

i i

i i

i i

i i

η

η

η

η

where ∑
=+

++=+′
1)1(

2
2))1()1(()1(

tx
jji

i

tftatS and ∑
=+

=+′
1)1(

2))()(()1(
tx

jji

i

tftatS can both be

computed at O(P) time. This implies that S2(t) can be updated at O(P) time by using the above
rule.

What Is the Gain?

So far, we have shown that computing distance to all nodes (Step 3 in SOM) and updating
weights of nodes (Step 4) can be implemented in such a way that it takes time proportional to
the number of non-zero coordinates in the input vector (represented by P), instead of total
number of coordinates (represented by N) Because these two operations need to be performed at
each iteration, the overall learning time for SOM can be drastically reduced while the output is
preserved the same. Our proposed SSOM algorithm is efficient for applications where the
average number of present features in a given record is much lower than the total number of
available features in the entire database, i.e., exhibiting the sparse input vector characteristic. Our
SSOM algorithm takes O(PS) time instead of O(S2), which can be thousands of times faster with
up-to-day tasks. Since P is almost a constant invariant to the scale S , the resulting time
complexity of SSOM is almost linear: O(S).

It is easy to check whether a similar transformation technique can be applied when the input
coordinates are real numbers and not limited to 0 or 1. All the algorithmic improvements remain
the same as long as the input vectors are sparse.

5. Benchmarking Experiments
The above SSOM algorithm was implemented on two SOM-based systems developed earlier at
the Illinois DLI project [3399] [1133].

Electronic Brainstorming Comment Classification
Orwig at al [3399] described research in the application of an SOM algorithm to the problem of
classification of electronic brainstorming output and evaluation of the results. Electronic
brainstorming is one of the most productive tools in the electronic meeting system called
GroupSystems [1100]. A major step in group problem-solving involves the classification of
electronic brainstorming output into a manageable list of concepts, topics, or issues that can be
further evaluated by the group. Information overload and the cognitive demand of processing a
large quantity of textual data make this step problematic. Our research built upon previous work
in automating the meeting classification process using a Hopfield neural network [10].
Evaluation comparing SOM output with Hopfield and human expert output using the same set of
data found that the SOM performed as well as a human expert in representing term association in
the meeting output and out-performed the Hopfield algorithm. In addition, recall of consensus
meeting concepts and topics using the Kohonen algorithm was equivalent to that of the human
expert. However, precision of the SOM was poor.

The graphical representation of textual data produced by SOM suggests many opportunities for
improving information organization of textual data. Increasing uses of electronic mail , computer-
based bulletin board systems, and world-wide web services present unique challenges and
opportunities for a system-aided classification approach. Research has shown that the Kohonen
SOM can be used to create ``a picture that can represent a thousand (or more) words''
automatically.

A sample classification output (important meeting topics) represented by SOM is shown in
Figure 22. Each region represents one such topic as determined by SOM; the number of comments
classified under each region is noted in the map. Clicking on a specific region allows the user to
view the comments classified under it. Readers are referred to [3399] for more details. Sample
outputs can also be accessed via WWW at: http://ai.bpa.arizona.edu/gsmap/

Figure 2: SOM output for 202 electronic meeting comments

In order to improve the processing speed of SOM for GroupSystems, we proceeded to
experiment with using SSOM on the same brainstorming comments. The sample electronic
brainstorming data set for our SSOM bench-marking experiment consisted of 202 small
paragraph-size comments (i.e., 202 input vectors). The output layer consisted of a 20-by-10 grid,
(i.e., 200 output nodes). Each input vector varied in size (25-400 terms) and represented the top
terms(in frequency) in the input file. Using a DEC Alpha 3000/600 workstation (200 MHz, 128
MBs RAM) for our experiment, application of the original SOM algorithm took between 55
seconds and 18 minutes, depending on the vector size. As shown in Table 11 and Figure 33, the
SOM processing time increased proportionally to the size of the input vector. However, our
SSOM algorithm was invariant to the size of the input vector. The SSOM processing time ranged
between 41 seconds and 52 seconds (only small overhead was involved in initializing larger
input vectors).

Although this test set appears small in size, the SSOM speed-up (from 1.34 times to 21.73 times)
should be considered very important because each EBS session needs to be analyzed and
classified in real time during actual meetings [1100]. The SOM system was often used as an active

meeting facilitation agent for classifying textual meeting output [99]. A short meeting pause of 1-
2 minutes for SSOM generation is considered reasonable. However, waiting for 20 minutes and
more for SOM classification in an actual meeting may often disrupt meeting process and
dynamics. For longer meeting sessions and larger vector sizes, the SSOM speed-up was found to
be even more significant.

Table 1: Meeting comments: processing time as a function of the vector size (number of cycles
= 15,000)

 vector size non-optimized (min:sec) optimized (min:sec) speed-up (times)

25 0:55 0:41 1.34

50 2:06 0:41 3.07

75 3:18 0:42 4.71

100 4:30 0:43 6.28

125 5:41 0:43 7.93

150 6:53 0:43 9.60

175 8:05 0:43 11.28

200 9:16 0:46 12.09

225 10:28 0:45 13.96

250 11:40 0:47 14.89

275 12:51 0:47 16.40

300 14:03 0:48 17.56

325 15:15 0:49 18.67

350 16:26 0:50 19.72

375 17:38 0:51 20.75

400 18:50 0:52 21.73

Figure 3: Meeting comments: processing time as a function of the vector size

0:00

2:24

4:48

7:12

9:36

12:00

14:24

16:48

19:12

21:36

0 50 100 150 200 250 300 350 400 450

vector size

C
P

U
 t

im
e

(m
in

u
te

s)

not optimized

optimized

Internet Entertainment Homepage Classification
The problems of information overload and vocabulary differences have become more pressing
with the emergence of the increasingly popular Internet services. The main information retrieval
mechanisms provided by the prevail ing Internet WWW software are based on either keyword
search (e.g., Lycos, Alta Vista) or directory browsing (e.g., Yahoo!). Chen et al. [1133] have
presented research which aimed at providing an alternative concept-based categorization and
search capability for WWW servers based on the SOM algorithm. They reported results of
testing multi-layered SOM (MSOM) clustering algorithm to classify Internet homepages
according to their content. The category hierarchies created could serve to partition the vast
Internet services into subject-specific categories and databases and improve Internet keyword
searching and/or browsing.

In this study we used the same collection of about 10,000 entertainment-related homepages
(extracted by a spider running on the entertainment portion of the Yahoo! directory). The top-
most classification output (entertainment-related topics) represented by SOM is shown in Figure
44. Each region represents an important entertainment-related topic (category) determined by
SOM and the number of homepages classified under each region was also noted in the map.
Each region can be clicked on to view a more detailed SOM map representing sub-topics
classified under the region. The threshold for the lowest-level map was set to 100 homepages. By
clicking the lowest-level map, a user could view the actual homepages. Readers are referred to
[1133] for more details. Sample outputs can also be accessed via WWW at:
http://ai.bpa.arizona.edu/ent/

Figure 4: First-level map for 10,000 entertainment-related homepages

The same DEC Alpha 3000/600 was used for the SSOM experiment on Internet homepages.
Only the first-level map was used for comparison. (Producing maps of all levels took 4-5 times
the first-level map processing time.) As shown in Table 22 and Figure 55, processing time for SOM
varied significantly according to the input vector size (25 to 400 coordinates), from 10 minutes
and 10 seconds to 190 minutes and 20 seconds. Using SSOM, the processing time ranged
between 8 minutes and 12 seconds and 12 minutes and 33 seconds. As plotted in Figure 55,
SSOM was largely invariant to the vector size, while SOM process time was linearly
proportional to the vector size. The SOM speed-up was15-fold when vector size was 400.

Due to the time requirement for testing the SOM algorithm, we were unable to continue to
increase the vector size beyond 400. However, the same speed-up conclusion should hold for
large vector sizes. For the large-scale Illinois DLI test collections, which involve several mill ion
Internet homepages and journal abstracts (5-10 GBs) [4477], significantly larger vector sizes (often
on the order of several thousands) are needed, thus demanding the SSOM classification
approach.

Table 2: Internet homepages: processing time as a function of the vector size (number of cycles
= 130,000)

 vector size non-optimized (min:sec) optimized (min:sec) speed-up (times)

25 10:10 8:12 1.23

50 22:10 8:29 2.61

75 34:11 8:46 3.90

100 46:12 9:04 5.10

125 58:12 9:21 6.22

150 70:13 9:39 7.28

175 82:14 9:56 8.28

200 94:14 10:13 9.22

225 106:15 10:31 10.10

250 118:16 10:48 10.96

275 130:16 11:06 11.74

300 142:17 11:23 12.50

325 154:18 11:40 13.23

350 166:18 11:58 13.90

375 178:19 12:15 14.56

400 190:20 12:33 15.17

Figure 5: Internet homepages: processing time as a function of the vector size

0:00:00

24:00:00

48:00:00

72:00:00

96:00:00

120:00:00

144:00:00

168:00:00

192:00:00

216:00:00

0 50 100 150 200 250 300 350 400 450

vector size

C
P

U
 t

im
e

(m
in

u
te

s)

not otpimized

optimized

Large Scale Experiment
In this section, we describe an experiment with a large scale SSOM. We built a map for a
collection that would be impossible to build on currently available hardware without using the
optimized SOM technique. We used the documents from the very well known COMPENDEX
collection, which consists of abstracts from such computing-related fields, such as electrical
engineering, computer science, information systems etc. The collection has 247,721 documents
and the size of the collection after we applied indexing was 360 megabytes. After indexing, we
extracted about 160,000 unique terms, not counting words in a stop-word list or words that
appeared fewer than 3 times. Of those, we selected 10,000 frequently occurring terms as the most
representative. We chose more frequently occurring terms since they provided the most overlap
in the document representations and we found this to be usually beneficial for the quality of
maps. We built a map of 30 by 30 nodes and performed 4,500,000 training cycles, so each
document was presented about 15 times. The entire process took 15,7 CPU hours, about 24 hours
of real time. We used the same DEC Alpha machine for this experiment as for the experiments
described above. Our analysis of the algorithms presented earlier in this paper suggests that the
straightforward technique would take about 1000 times as much time, which corresponds to 625
CPUdays. Even with a supercomputer speed-up ratio of about 40 to 1, this task could never be
finished in a reasonable amount of time.

6. Conclusion and Discussion
This paper presents our research efforts to develop a scalable and efficient textual classification
algorithm based on Kohonen's self-organizing feature map (SOM) algorithm. Our data structures
and implementation take advantage of the sparsity of coordinates in the document input vectors
and reduce the SOM computational complexity by several orders of magnitude. The resulting
time complexity of our algorithm is proportional to the average number of non-zero coordinates
in an input vector rather than to input vector size.

Our research was part of the Illinois DLI project, one of the long-term goals of which is to
develop scalable and robust categorization techniques for large-scale textual and multimedia
documents. Our current research efforts include:

• Algorithmic improvement: Several domain-independent SOM optimization techniques
reported in earlier studies [4433] [2288] are under consideration. We believe that by
incorporating these techniques in SSOM we may be able to reduce another order of
computational complexity.

• SSOM parallelization: As discussed earlier, we are in the process of implementing
parallel SSOM applications on the 24-node SGI Power Challenge and 24-node Convex
Exemplar supercomputers, made available through the National Center for
Supercomputing Applications (a partner of the Illi nois DLI project) [1144]. Our initial
implementation results showed a 10-fold improvement on a 24-node Convex Exemplar.

However, we also experienced significant file I/O bottleneck and inter-hypernode
communication and synchronization problems in the shared-memory multiprocessor
(SMP) based Convex Exemplar. More systematic benchmarking is under way.

• SSOM for visual thesaurus: In conjunction with a University of California at Santa
Barbara (UCSB) DLI project that focuses on geo-referenced collections, we are also in
the process of adopting SSOM for large-scale aerial photo and satellite image
classification based on texture and region extraction algorithms developed earlier at
UCSB [3355].

Acknowledgment
This project is supported mainly by:

• a Digital Library Initiative grant awarded by NSF/ARPA/NASA (``Building the
Interspace: Digital Library Infrastructure for a University Engineering Community,'' PIs:
B. Schatz, H. Chen, et al., 1994-1998, IRI9411318),

• an NSF/CISE grant (``Concept-based Categorization and Search on Internet: A Machine
Learning, Parallel Computing Approach,'' PI: H. Chen, 1995-1998, IRI9525790), and

• an NCSA High-performance Computing Resources Grant (``Information Analysis and
Visualization for Business Applications,'' PI: H. Chen, 1995-1997, IRI960001N).

References
1. C. Apte, F. Damerau, and S. M. Weiss. Automated learning of decision rules for text
categorization. ACM Transactions on Information Systems, 12(3):231-251, July 1994.

2. C. Apte, F. Damerau, and S. M. Weiss. Towards language independent automated learning of
text categorization models. In Proceedings of the 17th Annual International ACM/SIGIR
Conference on Research and Development in Information Retrieval, pages 3-12, Dublin, Ireland,
1994.

3. Beryl Atkins and Beth Levin. Admitting impediments. in lexical acquisition: exploiting on-
line resources to build a lexicon. In U. Zernik, editor, Lexical Acquisition: exploiting on-line
resources to build a lexicon, page 233, Hillsdale, New Jersey, 1991. Lawrence Erbaum
Associates.

4. R. A. Botafogo. Cluster analysis for hypertext systems. In Proceedings of the 16th Annual
International ACM/SIGIR Conference on Research and Development in Information Retrieval,
pages 116-125, Pittsburgh, PA, 1993.

5. R. Burgin. The retrieval effectiveness of five clustering algorithms as a function of indexing
exhaustiveness. Journal of the American Society for Information Science, 46(8):562-572,

September 1995.

6. M. Caudill. A little knowledge is a dangerous thing. AI Expert, 8(6):16-22, June 1993.

7. H. Chen. Machine learning for information retrieval: neural networks, symbolic learning, and
genetic algorithms. Journal of the American Society for Information Science, 46(3):194-216,
April 1995.

8. H. Chen, Schuffels C., and Orwig R. Internet categorization and search: A machine learning
approach. Journal of Visual Communication and Image Representation, 7:88-102, 1996.

9. H. Chen, A. Houston, J. Yen, and J. F. Nunamaker. Toward intelligent meeting agents. IEEE
COMPUTER, 29(8):62-70, August 1996.

10. H. Chen, P. Hsu, R. Orwig, L. Hoopes, and J. F. Nunamaker. Automatic concept
classification of text from electronic meetings. Communications of the ACM, 37(10):56-73,
October 1994.

11. H. Chen, B. R. Schatz, T. D. Ng, J. P. Martinez, A. J. Kirchhoff, and C. Lin. A parallel
computing approach to creating engineering concept spaces for semantic retrieval: The Illinois
Digital Library Initiative Project. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18(8):771-782, August 1996.

12. H. Chen, B. R. Schatz, T. Yim, and D. Fye. Automatic thesaurus generation for an electronic
community system. Journal of the American Society for Information Science, 46(3):175-193,
April 1995.

13. H. Chen, C. Schuffels, and R. Orwig. Internet categorization and search: a machine learning
approach. Journal of Visual Communications and Image Representation, 7(1):88-102, March
1996.

14. H. Chen and M. Yang. Self-organizing map optimization using Exemplar supercomputers.
In Center for Management of Information, University of Arizona, Working Paper, CMI-WPS 96-
15, 1996.

15. J. Dalton and A. Deshmane. Artificial neural networks. IEEE Potentials, 10(2):33-36, April
1991.

16. V. Demian and J. C. Mignot. Implementation of the self-organizing feature map on parallel
computers. In L. Bouge, M. Cosnard, Y. Robert, and D. Trystram, editors, Proceedings of the
Second Joint International Conference on Vector and Parallel Processing, pages 775-776,
Berlin, Heidelberg, 1992. Springer.

17. R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons,
Inc., New York, NY, 1973.

18. B. Everitt. Cluster Analysis. Second Edition, Heinemann Educational Books, London,
England, 1980.

19. George W. Furnas, L.M. Gomez Tomas K. Landauer, and Susan T.Dumais. The vocabulary

problem in human-system communication. Communications of the ACM, 30:964-971, 1987.

20. G. Grefenstette. Explorations in Automatic Thesaurus Discovery. Kluwer Academic
Publishers, Moston, MA, 1994.

21. A. Hiotis. Inside a self-organizing map. AI Expert, 8(4):38-43, April 1993.

22. T. Honkela, S. Kaski, K. Lagus, and T. Kohonen. Newsgroup exploration with WEBSOM
method and browsing interface. In Report A32, Helsinki University of Technology, January 1996.

23. J. J. Hopfield. Neural network and physical systems with collective computational abil ities.
Proceedings of the National Academy of Science, USA, 79(4):2554-2558, 1982.

24. H. Ichiki, M. Hagiwara, and N. Nakagawa. Self-organizing multi-layer semantic maps. In
Proceedings of International Conference on Neural Networks, pages 357-360, Seattle, WA, July
1991.

25. M. Iwayama and T. Tokunaga. Cluster-based text categorization: a comparison of category
search strategies. In Proceedings of the 18th Annual International ACM/SIGIR Conference on
Research and Development in Information Retrieval, pages 273-280, Seattle, WA, 1995.

26. T. Kohonen. Self-Organization and Associative Memory. Third Edition, Springer-Verlag,
Berlin Heidelberg, 1989.

27. T. Kohonen. Self-Organization Maps. Springer-Verlag, Berlin Heidelberg, 1995.

28. P. Koikkalainen. Fast deterministic self-organizing maps. In F. Fogelman-Soulié and P.
Gallinari, editors, Proceedings of the International Conference on Artificial Neural Networks,
pages 63-68, Nanterre, France, 1995.

29. K. L. Kwok. Query learning using ANN with adaptive architecture. In Lawrence A.
Birmbaum and Gregg C. Collins, editors, Machine Learning: proceedings of the eight
International Workshop (ML91), pages 260-264, SanMateo, CA, 1991. Morgan Kaufmann
Publishers Inc.

30. D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In
Proceedings of the 17th Annual International ACM/SIGIR Conference on Research and
Development in Information Retrieval, pages 3-12, Dublin, Ireland, 1994.

31. E. D. Liddy, W. Paik, and E. S. Yu. Text categorization for multiple users based on semantic
features from a machine-readable dictionary. ACM Transactions on Information Systems,
12(3):278-295, July 1994.

32. X. Lin, D. Soergel, and G. Marchionini. A self-organizing semantic map for information
retrieval. In Proceedings of the Fourteenth Annual International ACM/SIGIR Conference on
Research and Development in Information Retrieval, pages 262-269, Chicago, IL, October 13-16
1991.

33. R. P. Lippmann. An introduction to computing with neural networks. IEEE Acoustics Speech
and Signal Processing Magazine, 4(2):4-22, April 1987.

34. K. J. MacLeod and W. Robertson. A neural algorithm for document clustering. Information
Processing & Management, 27(4):337-346, 1991.

35. B. S. Manjunath and W. Y. Ma. Texture features for browsing and retrieval of image data.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8):837-841, August 1996.

36. W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in neural nets.
Bulletin of Mathematical Biophysics, 5:115-137, 1943.

37. D. Merkl and A. M. Tjoa. The representation of semantic similarity between documents by
using maps: application of an artificial neural network to organize software libraries. In
Proceedings of the General Assembly Conference and Congress of the International Federation
for Information and Documentation, 1994.

38. R. Mikkulainen. Subsymbolic Natural Language Processing: An Integrated Model of Scripts,
Lexicon, and Memory. The MIT Press, Cambridge MA, 1993.

39. R. Orwig, H. Chen, and J. F. Nunamaker. A graphical, self-organizing approach to
classifying electronic meeting output. Journal of the American Society for Information Science,
48(2):157-170, February 1997.

40. E. Rasmussen. Clustering algorithms. In Information Retrieval: Data Structures and
Algorithms, W. B. Frakes and R. Baeza-Yates, Editors, Prentice Hall, Englewood Cliffs, NJ,
1992.

41. E. Riloff and W. Lehnert. Information extraction as a basis for high-precision text
classification. ACM Transactions on Information Systems, 12(3):296-337, July 1994.

42. H. Ritter and T. Kohonen. Self-organizing semantic maps. Biological Cybernetics, 61:241-
254, 1989.

43. J. S. Rodrigues and L. B. Almeida. Improving the learning speed in topological maps of
patterns. In Proceedngs of International Conference on Neural Networks, pages 813-816,
Dordrecht, Netherlands, 1990. Kluwer Academic Publishers.

44. D. E. Rumelhart, G. E. Hinton, and R. J. Wil liams. Learning internal representations by error
propagation. In Parallel Distributed Processing, pages 318-362, D. E. Rumelhart, J. L.
McClelland, and the PDP Research Group, Editors, The MIT Press, Cambridge, MA, 1986.

45. Justeson John S. and Slava M. Katz. Co-occurrences of anonymous adjectives and their
contexts. Computational Linguistics, 17:1-19, 1991.

46. G. Salton. Automatic Text Processing. Addison-Wesley Publishing Company, Inc., Reading,
MA, 1989.

47. B. R. Schatz and H. Chen. Building large-scale digital libraries. IEEE COMPUTER,
29(5):22-27, May 1996.

48. B. R. Schatz, B. Mischo, T. Cole, J. Hardin, A. Bishop, and H. Chen. Federating repositories
of scientific literature. IEEE COMPUTER, 29(5):28-36, May 1996.

49. H. Schutze, D. A. Hull, and J. O. Pedersen. A comparison of classifiers and document
representation for the routing problem. In Proceedings of the 18th Annual International
ACM/SIGIR Conference on Research and Development in Information Retrieval, pages 229-237,
Seattle, WA, 1995.

50. Lewis P. A. W., P. B. Baxendale, and J. L. Bennet. Statistical discrimination of the
synonymy/antonymy relationship between words. Journal of the ACM, 14:20-44, 1967.

